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COMBUSTION INSTABILITIES IN SOLID PROPELLANT ROCKET MOTORS

F.E.C. Culick
California Institute of Technology
1200 E. California Blvd., MC 205-45

Pasadena, CA 91125, U.S.A.

ABSTRACT

These notes for two lectures are intended to provide the basic ideas for understanding and interpreting
coherent oscillations is solid propellant rocket motors. The discussion is concerned mainly with the dynamics of a
system consisting of two coupled sub-systems: the chamber containing combustion products; and the combustion
processes con¯ned almost entirely to a thin region adjacent to the surface of burning propellant. Coupling between
the sub-systems is always present due to the sensitivity of the ocmbustion processes to local values of pressure
and velocity. Thus the primary mechanisms for instabilities in solid rockets are related to those interactions. A
second mechanism involves vortex shedding, a cause of instabilities mainly in large motors, notably the Space
Shuttle and Ariene V boost motors. Following a brief review of the history of combustion instabilities in solid
rockets, the mechanisms and their quantitative representations are discussed. The remainder of the lectures is
devoted to an approximate analysis providing a general framework convenient for understanding, predicting and
interpreting combustion instabilities.

1. A BRIEF SURVEY OF COMBUSTION INSTABILITIES IN SOLID ROCKETS

Chemical propulsion systems depend fundamentally on the conversion of energy stored in molecular bonds
to mechanical energy of a vehicle in motion. The ¯rst stage of the process, combustion of oxidizer and fuel, takes
place in a vessel open only to admit reactants and to exhaust the hot products. Higher performance is achieved
by increasing the rate of energy release per unit volume. For example, the power density in the Atlas engine
(1950s) was 146.4 gigawatts/m3. The power densities in solid rockets are much less. For a cylindrical bore, the
values are approximately 0.25(r=D) gigawatts/m3, where r is the linear burning rate, typically a few centimeters
per second, and D is the diameter. Thus the power densities rarely exceed one gigawatt/m3. These are indeed
very large power densities. We cannot be surprised that such enormous power densities should be accompanied
by relatively small °uctuations whose amplitudes may be merely annoying or possibly unacceptable in the worst
cases.

We are concerned in these lectures with the dynamics of combustion systems using solid propellants. The
motivation for addressing the subject arises from particular problems of combustion instabilities observed in all
types of solid rockets. Typically the instabilities are observed as pressure oscillations growing spontaneously
out of the noise during a ¯ring. As a practical matter, combustion instabilities are more likely encountered
during development of new combustion systems intended to possess considerable increases of performance in
some sense. The present state of theory and experiment has not provided a su±ciently strong foundation to
provide a complete basis for prediction. Hence there are only a few guidelines available to help designers avoid
combustion instabilities. In that respect, more is known about the dynamical behavior of solid rockets than about
corresponding problems in other propulsion systems.

Under such conditions, it is extremely important to pay attention to the experience gained in the laboratory
as well as in full-scale tests of devices: theory alone is quite helpless because of the impossibility of obtaining
quantitative results solely from ¯rst principles. Moreover, because of the many properties of the behavior common
to the various systems, much is to be gained from understanding the characteristics of systems other than the one
that may be of immediate concern. It is therefore proper to begin with a survey of some typical examples drawn
from many years' experience. Theory is an indispensable aid to making sense of observational results. Conversely,
discussion of various experimental observations is a natural place to introduce many of the basic ideas contained
in the theory.



Combustion Instabilities in Solid Propellant Rocket Motors 

=

From the beginning of this subject, the central practical question has been: What must be done to eliminate
combustion instabilities? Traditionally, the approach taken has been based on passive measures, largely ad hoc
design changes or notably for solid propellant rockets, favorable changes of propellant composition. During the
past few years, considerable e®ort has been expended on the problem of applying active feedback control to
combustion systems. It's an attractive proposition to control or eliminate instabilities with feedback control,
particularly because one implication, often made explicit, is that the use of feedback will somehow allow one to
get around the di±cult problems of understanding the details of the system's behavior. Many laboratory, and
several full-scale demonstrations with gas turbines support that point of view. Proposals have been made for
active control of solid rockets but there seem to be no successful demonstrations. In any case, for at least two
reasons, serious application of feedback control must be based on understanding the dynamics of the system to
be controlled:

(i) all experience in the ¯eld of feedback control generally has demonstrated that the better the controlled
plant is understood, the more e®ective is the control;

(ii) without understanding, development of a control system for a full-scale device is an ad hoc matter, likely
to involve expensive development with neither guarantee of success nor assurance that the best possible
system has been designed.

Consequently, whatever one's motivation for investigating combustion instabilities, it is essential to have
a good understanding of experiences with as many systems as possible. Therefore we begin this book with a
lengthy survey of combustion instabilities observed in various systems. The theoretical framework is constructed
to accommodate these observations, but later emerges also as a perfect vehicle for investigating the use of active
feedback control.

1.1. Introduction. For the kinds of propulsion systems normally used, combustion chambers are intended
to operate under conditions that are steady or vary little. The central questions addressed in the monograph
concern the stability and behavior subsequent to instability of steady states in combustors. If a state is unstable
to small disturbances, then an oscillatory motion usually ensues. Such combustion instabilities commonly exhibit
well-de¯ned frequencies ranging from 15 hz or less to many kilohertz. Even at the highest amplitudes observed
in practice, the instabilities consume only a small fraction of the available chemical energy. Thus, except in
extremely severe instances, the oscillations do not normally a®ect the mean thrust or steady power produced
by the systems. Serious problems may nevertheless arise due to structural vibrations generated by oscillatory
pressures within the chamber or by °uctuations of the thrust. In extreme cases, internal surface heat transfer
rates may be ampli¯ed ten-fold or more, causing excessive erosion of the chamber walls.

An observer perceives an unstable motion in a combustion chamber as \self-excited," a consequence of the
internal coupling between combustion processes and unsteady motion. Except in cases of large disturbances
(e.g. due to passage of a ¯nite mass of solid material through the nozzle), the amplitude of the motion normally
seems to grow out of the noise without the intrusion of an external in°uence. Two fundamental reasons explain
the prevalence of instabilities in combustion systems:

(i) an exceedingly small part of the available energy is su±cient to produce unacceptably large unsteady
motions;

(ii) the processes tending to attenuate unsteady motions are weak, chie°y because combustion chambers are
nearly closed.

These two characteristics are common to all combustion chambers and imply that the possibility of instabilities
occurring during development of a new device must always be recognized and anticipated. Treating combustion
instabilities is part of the price to be paid for high-performance chemical propulsion systems. It is a corollary
of that condition that the problem will never be totally eliminated. Advances in research will strengthen the
methods for solution in practical applications, and will provide guidelines to help in the design process.

The fact that only a small part of the total power produced in a combustor is involved in combustion instabil-
ities suggests that their existence and severity may be sensitive to apparently minor changes in the system. That
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conclusion is con¯rmed by experience. Moreover, the complicated chemical and °ow processes block construc-
tion of a complete theory from ¯rst principles. It is therefore essential that theoretical work always be closely
allied with experimental results, and vice versa. No single analysis will encompass all possible instabilities in the
various practical systems. There are nevertheless many features common to all combustion chambers. Indeed, it
is one theme of this book that the characteristics shared by propulsion systems in many respects dominate the
di®erences. While it is not possible to predict accurately the occurrence or details of instabilities, a framework
does exist for understanding their general behavior, and for formulating statements summarizing their chief char-
acteristics. For practical purposes, the theory often serves most successfully when used to analyze, understand,
and predict trends of behavior, thereby also providing the basis for desirable changes in design. Experimental
data are always required to produce quantitative results and their accuracy in turn is limited by uncertainties in
the data.

Special problems may be caused by combustion instabilities interacting with the vehicle. Because the fre-
quencies are usually well-de¯ned in broad ranges, resonances with structural modes of the vehicle or with motions
of components are common. Perhaps the best known form of this sort of oscillation is the POGO instability in
liquid rockets. Strong couplings between chamber pressure oscillations, low-frequency structural vibrations, and
the propellant feed system sustain oscillations. The amplitudes may grow to unacceptable limits unless measures
are taken to introduce additional damping. A striking example occurred in the Apollo vehicle. The central engine
of the cluster of ¯ve in the ¯rst stage was routinely shut o® earlier than the others in order to prevent growth
of POGO oscillations to amplitudes such that the astronauts would be unable to read instruments. Comments
on the vibrations and the early shut o® may be heard in communications recorded during the launch phase of
several Apollo missions.

In the U.S., and possibly in other countries, notably Germany and Russia before and during World War
II, combustion instabilities were ¯rst observed in solid and liquid propellant rocket engines. Subsequent to the
war, considerable e®ort was expanded in Russia and in the U.S. to solve the problem, particularly in large liquid
systems. Probably the most expensive program was carried out during development of the F-1 engine for the
Apollo vehicle (Ofelein and Yang, 1993).

Liquid-fueled, air-breathing propulsion systems also commonly su®er combustion instabilities. Axial oscil-
lations in ramjet engines are troublesome because their in°uence on the shock system in the inlet di®user can
reduce the inlet stability margin. Owing to their high power densities and light construction, thrust augmenters
or afterburners are particularly susceptible to structural failures.

For any afterburner, conditions can be found under which steady operation is not possible. As a result,
the operating envelope is restricted by the requirement that combustion instabilities cannot be tolerated. Due to
structural constraints placed on the hardware, combustion instabilities in afterburners are particularly undesirable
and are therefore expensive to treat.

In recent years combustion instabilities in the main combustor of gas turbines have become increasingly
troublesome. The chief reason is ultimately due to requirements that emission of pollutants, notably oxides of
nitrogen, be reduced. A necessary strategy, particularly for applications to °ight, is reduction of the average
temperature at which combustion takes place. Generation of NO by the thermal or `Zel'dovich' mechanism is
then reduced. Lower combustion temperature may be achieved by operating under lean conditions, when the
°ame stabilization processes tend to be unstable. Fluctuations of the °ame cause °uctuations of energy release,
which in turn may produce °uctuations of pressure, exciting acoustical motions in the chamber and a®ecting the
generation of nitrogen oxides.

Finally, almost all solid rockets exhibit instabilities, at least during development, and occasionally motors are
approved even with low levels of oscillations. Actual failure of a motor itself is rare in operations, but vibrations
of the supporting structure and of the payload must always be considered. To accept the presence of weak
instabilities in an operational system one must have su±cient understanding and con¯dence that the amplitudes
will not unexpectedly grow to unacceptable levels. One purpose of these lectures is to provide an introduction to
the foundation for gaining the necessary understanding.

In the most general sense, a combustion instability may be regarded as an unsteady motion of a dynamical
system capable of sustaining oscillations over a broad range of frequencies. The source of energy associated
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with the motions is ultimately related to the combustion processes, but the term `combustion instability,' while
descriptive, is misleading. In most instances, and always for the practical problems we discuss in this book,
the combustion processes themselves are stable: uncontrolled explosions and other intrinsic chemical instabilities
are not an issue. Observations of the gas pressure or of accelerations of the enclosure establish the presence of
an instability in a combustion chamber. Excitation and sustenance of oscillations occur because coupling exists
between the combustion processes and the gasdynamical motions, both of which may be stable. What is unstable
is the entire system comprising the propellants, the propellant supply system, the combustion products that form
the medium supporting the unsteady motions, and the containing structure.

If the amplitude of the motions is small, the vibrations within the chamber are usually related to classical
acoustic behavior possible in the absence of combustion and mean °ow. The geometry of the chamber is therefore
a dominant in°uence. Corresponding to classical results, traveling and standing waves are found at frequencies
approximated quite well by familiar formulas depending only on the speed of sound and the dimensions of the
chamber. If we ignore any particular in°uences of geometry, we may describe the situation generally in the
following way, a view valid for any combustion instability irrespective of the geometry or the type of reactants.

Combustion processes are generally sensitive to °uctuations of pressure, density, and temperature of the
environment. A °uctuation of burning produces local changes in the properties of the °ow. Those °uctuations
propagate in the medium and join with the global unsteady ¯eld in the chamber. Under favorable conditions,
the ¯eld develops to a state observable as a combustion instability. As illustrated schematically in Figure 1.1,
we may view the process abstractly in analogy to a feedback ampli¯er in which addition of feedback to a stable
oscillator can produce oscillations. Here the oscillator is the combustion chamber, or more precisely, the medium
within the chamber that supports the unsteady wave motions. Feedback is associated with the in°uences of the
unsteady motions on the combustion processes or on the supply system, which in turn generate °uctuations of the
¯eld variables. The dynamical response of the medium converts the local °uctuations to global behavior. In the
language of control theory, the ¯eld in the chamber is the `plant,' described by the general equations of motion.

Figure 1.1. Schematic Diagram of a Combustion System as a Feedback Ampli¯er

The diagram in Figure 1.1 illustrates the global point of view taken here. Broadly, the subjects covered divide
into two categories: those associated with the plant|the °uid mechanics and other physical processes comprising
the combustor dynamics; and those connected primarily with the feedback path, chie°y combustion processes and
their sensitivity to time-dependent changes in the environment, the combustion dynamics. Splitting is particularly
clear for solid rockets because practically all of the combustion processes are completed in a thin region adjacent to
the burning propellant. The theory we will describe encompasses all types of combustion instabilities in a general
framework having the organization suggested by the sketch. External forcing functions are accommodated as
shown in the sketch, but the causes associated with the feedback path are far more signi¯cant in practice.

Figure 1.1 is motivated by more than a convenient analogy. For practical purposes in combustion systems, we
generally wish to eliminate instabilities. Traditionally that has meant designing systems so that small disturbances
are stable, or adding some form of energy dissipation to compensate the energy gained from the combustion
processes, that is, passive control. However, in the past few years interest has grown in the possibility of active
control of instabilities. If that idea is to be realized successfully, it will be necessary to combine modern control
theory with the sort of theory described here. It is advantageous to think from the beginning in terms that
encourage this merger of traditionally distinct disciplines.
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We will return to the subject of passive control for solid rockets at the end of these lectures. Any method
of control is rendered more e®ective the more ¯rmly it rests on understanding the problem to be solved. Un-
derstanding a problem of combustion instabilities always requires a combination of experiment and theory. For
many reasons, including intrinsic complexities and inevitable uncertainties in basic information (e.g., material
properties, chemical dynamics, turbulent behavior of the °ow ¯eld, ...), it is impossible to predict from ¯rst
principles the stability and nonlinear behavior of combustion systems. Hence the purpose of theory is to provide
a framework for interpreting observations, both in the laboratory and full-scale devices; to suggest experiments
to produce required ancillary data or to improve the empirical base for understanding; to formulate guidelines
for designing full-scale systems; and globally to serve, like any good theory, as the vehicle for understanding the
fundamental principles governing the physical behavior, thereby having predictive value as well.

All theoretical work in this ¯eld has been carried out in response to observational and experimental results.
We therefore spend much of the remainder of this introductory chapter on a survey of the characteristics of
combustion instabilities observed, and occasionally idealized, for combustion systems generally to be analyzed in
later chapters. The general point of view taken throughout the book will then be formulated in heuristic fashion,
based on experimental results.

1.2. Historical Background. Some of the consequences and symptoms of combustion instabilities were
¯rst observed in the late 1930s and early 1940s, roughly at the same time for liquid and solid propellant rockets,
and apparently somewhat earlier in the Soviet Union than in the U.S. With the later development of turbojet
engines, high-frequency instabilities were found in thrust augmenters or afterburners in the late 1940s and early
1950s. Although the problem had been encountered in ramjet engines in the 1950s, it became a matter of greater
concern in the late 1970s and 1980s. The introduction of compact dump combustors led to the appearance of
longitudinal or axial oscillations that interfered with the inlet shock system, causing loss of pressure margin and
'unstart' in the most severe cases. Owing to availability, almost all of the data cited here as examples will be
derived from liquid rockets, solid rockets and laboratory devices. Figure 1.2 is a qualitative representation of
the chronology of combustion instabilities. Due to the accessibility of documentation and the experiences of the
author, particular cases cited are mainly those reported in the U.S.
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Figure 1.2. A Chronology of Combustion Instabilities

Several reviews of early experiences with combustion instabilities have been prepared for liquid rockets (Ross
and Datner 1954) and for solid rockets (Wimpress 1950; Price 1968; Price and Flandro 1992). The details are
not important here, but the lessons learned certainly are. Often forgotten is the most important requirement of
good high-frequency instrumentation to identify and understand combustion instabilities in full-scale as well as in
laboratory systems. Until the early 1940s, transducers and instrumentation for measuring pressure had inadequate
dynamic response to give accurate results for unsteady motions. Ross and Datner note that \Prior to 1943,
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the resolution of Bourdon gauges, photographed at 64 and 128 fps, constituted the principal instrumentation."
Recording oscillographs were introduced sometime in 1943, but not until the late 1940s were transducers available
with su±cient bandwidth to identify instabilities at higher frequencies (hundreds of hertz and higher).

The situation was even more di±cult with solid rockets because of the practical di±culties of installing and
cooling pressure transducers. Probably the experience with cooling chamber and nozzle walls helps explain why
quantitative results were obtained for instabilities in liquid rockets earlier than for solid rockets (E. W. Price,
private communication). Prior to the appearance of high-frequency instrumentation, the existence of oscillations
was inferred from such averaged symptoms as excessive erosion of inert surfaces or propellant grains due to
increased heat transfer rates; erratic burning appearing as unexpected shifts in the mean pressure; structural
vibrations; visible °uctuations in the exhaust plume; and, on some occasions, audible changes in the noise
produced during a ¯ring.

Experimental work progressed for several years before various unexplained anomalies in test ¯rings were
unambiguously associated with oscillations. By the late 1940s, there was apparently general agreement among
researchers in the U.S. and Europe that combustion instabilities were commonly present in rocket motors and
that they were somehow related to waves in the gaseous combustion products. In addition to measurements with
accelerometers, strain gauges, and pressure transducers, methods for °ow visualization soon demonstrated their
value, mainly for studies of liquid propellant rockets (Altseimer 1950; Berman and Logan 1952; and Berman and
Scharres 1953). Characteristics of the instabilities as acoustic vibrations, or weak shock waves, were revealed.

It is much more di±cult to observe the °ow ¯eld in a solid rocket motor and during the early years of
development, the only results comparable to those for liquid rockets were obtained when excessive chamber
pressures caused structural failures. Partially burned grains often showed evidence of increased local burning
rates, suggesting (possibly) some sort of in°uence of the gas °ow. The same events also produced indications of
unusual heating of the unburned solid propellant, attributed to dissipation of mechanical vibrational energy (Price
and Flandro, 1992). Subsequently that interpretation was con¯rmed by direct measurements (Shuey, 1987).

High-frequency or `screech' oscillations were also ¯rst encountered in afterburners in the late 1940s; as a
result of the experience with rockets and the availability of suitable instrumentation, the vibrations were quickly
identi¯ed as combustion instabilities. The sta® of the Lewis Laboratory (1954) compiled most of the existing
data and performed tests to provide a basis for guidelines for design.

Thus by the early 1950s most of the basic characteristics of combustion instabilities had been discovered in
both liquid-fueled and solid-fueled systems. Many of the connections with acoustical properties of the systems,
including possible generation of shock waves, were recognized qualitatively. Although the frequencies of oscillations
found in tests could sometimes be estimated fairly closely with results of classical acoustics, no real theory having
useful predictive value existed. During the 1950s and the 1960s the use of sub-scale and laboratory tests grew
and became increasingly important as an aid to solving problems of combustion instabilities occurring in the
development of new combustion systems.

1.3. Solid Propellant Rocket Motors. Since the late 1950s, serious concern with instabilities in solid
propellant motors has been sustained by problems arising in both small (tactical) and large (strategic and large
launch systems) rockets. The volume of collected papers compiled and edited by Berle (1960) provides a good
view of the state of the ¯eld at the end of the 1950's in the Western countries. The level of activity remained
high and roughly unchanged through the 1960's, due entirely to the demands of the Cold War: the use of solid
rocket boosters in systems for launching spacecraft, and for changing trajectories, came later. During the 1950's
and 1960's strong emphasis was already placed on sub-scale and laboratory tests, a strategy dictated at least
partly by the large costs of full-scale tests. As a result, more is understood about combustion instabilities in solid
rockets than in other systems. Moreover, methods and viewpoints developed by the solid rocket community have
strongly in°uenced the approaches to treating combustion instabilities in other systems. The theory developed
in this book is an example of that trend.

A problem with the third stage of the Minuteman II launch vehicle in the late 1960's (Joint Prop. Mtg 1972)
initially motivated considerable research activity during the following decade, sponsored largely by the Air Force
Rocket Propulsion Laboratory. The causes of three failures in test °ights had been traced to the presence of
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combustion instabilities. Thorough investigation showed that although oscillations had been present throughout
the history of the motor, a signi¯cant change occurred during production, apparently associated with propellant
Lot 10. Figure 1.3 shows the main observable features.

(a)

(b)

Figure 1.3. Frequencies and Amplitudes of Combustion Instabilities in the Minuteman II, Stage
3 Motor: (a) A Pressure Record from a Flight Test; (b) Frequencies and Amplitudes Measured
During Static Tests.

The oscillations existed during the ¯rst ¯fteen seconds of every ¯ring and always had frequency around
500 Hertz. Whatever occurred with production Lot 10 caused the maximum amplitudes of oscillations to be
unpredictably larger in motors containing propellant from that and subsequent lots. The associated structural
vibrations caused failures of a component in the thrust control system.

This example exhibits several characteristics common to many instances of combustion instabilities in solid
rockets. In test-to-test comparisons, frequencies are reproducible and amplitudes show only slight variations unless
some change occurs in the motor. Any changes must be of two sorts: either geometrical, i.e. the internal shape
of the grain, or chemical, consequences of variations in the propellant. Chemical changes, i.e. small variations
in the propellant composition, are most likely to a®ect the dynamics of the combustion processes and indirectly
other physical processes in the motor. That is apparently what happened in the Minuteman.

Between production of propellant Lots 9 and 10, the supplier of aluminum particles was changed, because
the original production facility was accidentally destroyed. The new aluminum di®ered in two respects: shapes
of the particles, and the proportion of oxide coating. Testing during investigation of the instability led to the
conclusion that consequent changes in the processes responsible for the production of aluminum oxide products
of combustion generated smaller particle sizes of Al2O3. The smaller sizes less e®ectively attenuated acoustic
waves; the net tendency to excite waves therefore increased. As a result, the motors were evidently more unstable
and also supported larger amplitudes of oscillation. The second conclusion was purely speculative at the time of
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the investigation, but can now be demonstrated with the theory covered in this book. Nevertheless, the details
explaining why the change in the aluminum supplied led eventually to the signi¯cant changes in the combustion
products remain unknown.

Subsequent to the Minuteman problem, the Air Force Rocket Propulsion Laboratory supported a substantial
program of research on many of the most important problems related to combustion instabilities in solid rockets.
Broadly, the intellectual centroid of that program lay closer to the areas of combustor dynamics and combustion
dynamics than to the detailed behavior of propellants. The synthesis, chemistry and kinetics of known and new
materials belonged to programs funded by other agencies in the U.S. and in Europe, notably ONERA in France.
By far most of the related work in Russia has always been concerned with the characteristics and combustion of
propellants, with relatively little attention to the dynamics of combustors.

As the research activities related speci¯cally to solid rockets decreased during the 1980s and new programs
began for liquid-fueled systems, the communities, previously quite separate, grew closer together. For example,
prompted by contemporary concern with problems in ramjets, a workshop sponsored by JANNAF (Culick 1980)
was organized partly with the speci¯c intention to bring together people experienced in the various propulsion
systems. During the 1980s there was considerable interchange between the various research communities and
since that time, a signi¯cant number of people have worked on both solid and liquid-fueled systems. That shift
in the sociology of the ¯eld has provided the possibility and much of the justi¯cation for this book. Events of the
past decade have con¯rmed that the ¯eld of combustion instabilities is very usefully approached as a uni¯cation
of the problems arising in all systems.

In Europe during the 1990's, work on combustion instabilities in solid propellant rockets has been motivated
largely by low frequency oscillations in the booster motors for the Ariane 5. The most intensive and comprehensive
recent work in the U.S. has been carried out in two Multiuniversity Research Initiators (MURI) involving 15
di®erent universities. An unusual characteristic of those programs, active for ¯ve years beginning in 1995, was
the inclusion of coordinated research on all aspects of problems of combustion instabilities in solid propellant
rockets, from fundamental chemistry to the internal dynamics of motors. Results of recent works will be covered
here in the appropriate places.

1.4. Mechanisms of Combustion Instabilities. Just as for steady operation, the chief distinctions among
combustion instabilities in di®erent combustors must ultimately be traceable to di®erences in geometry and the
states of the reactants. The root causes, or `mechanisms', of instabilities are imbedded in that context and are
often very di±cult to identify with certainty. Possibly the most di±cult problem in this subject is to quantify
the mechanism. Solving that problem requires ¯nding an accurate representation of the relevant dynamics.

The simplest and most convenient characterization of an unstable oscillation is expressed in terms of the
mechanical energy of the motion. Linear theory produces the result that the rate of growth of the amplitude
is proportional to the fractional rate of change of energy, the sum of kinetic and potential energies. The idea
is discussed further in the following section. What matters at this point is that the term `mechanism' refers
to a process that causes transfer of energy to the unsteady motion from some other source. Thus, mechanisms
form the substance of the feedback path in Figure 1.1. Generally there are only three sorts of energy sources for
unsteady motions in a combustor: the combustion processes; the mean °ow, which of course itself is caused by
combustion; and a combination of combustion and mean °ow simultaneously acting. The distinction is important
because the physical explanations of the energy transfer are very di®erent in the three cases.

Combustion processes are sensitive to the macroscopic °ow variables, particularly pressure, temperature and
velocity. Even slow changes of those quantities a®ect the energy released according to rules that can be deduced
from the behavior for steady combustion. In general, however, representations of that sort, based on assuming
quasi-steady behavior, are inadequate. Combustion instabilities normally occur in frequency ranges such that
genuine dynamical behavior is signi¯cant. That is, the transient changes of energy release do not follow precisely
in phase with imposed changes of a °ow variable such as pressure.

The next simplest assumption is that the combustion processes behave as a ¯rst order dynamical system
characterized by a single time delay or relaxation time. That idea was apparently ¯rst suggested by Karman
as a basis for interpreting instabilities discovered in early experiments with liquid propellant rockets at Caltech
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(Summer¯eld, 1941). That representation, which came to be called the `n ¡ ¿ model' was developed most
extensively by Crocco and his students at Princeton during the 1950s and 1960s. Time delays may be due,
for example, to processes associated with ignition of reactants. Subsequent to injection as the reactants °ow
downstream, ¯nite times may be required for vaporization, mixing, and for the kinetics mechanism to reach
completions. Both e®ects may be interpreted as a convective time delay. Under unsteady conditions, the initial
state of the reactants, their concentrations, pressure, and velocity, also °uctuate, causing the delay time to be
both nonuniform in space and in time. As a result, rate of energy release downstream in the chamber is also
space- and time-dependent, and acts as a source of waves in the combustor.

The approximation of ¯rst order behavior fails entirely for the dynamics of burning solid propellants (Culick
1968). Although in good ¯rst approximation dominated by unsteady heat transfer in the condensed phase, a
di®usive process, the combustion dynamics in this case exhibits behavior closer to that of a second order system.
The frequency response of that burning rate tends normally to have a large broad peak centered at a frequency
falling well within the range of the frequencies characteristic of the chamber dynamics. Hence there is a clear
possibility for a resonance and instability suggested by the diagram in Figure 1.1. The chief mechanisms for
instabilities in solid rockets are discussed in the following chapter.

Generation of oscillations by the average °ow is due to causes roughly like those active in wind musical
instruments. In all such cases, °ow separation is involved, followed by instability of a shear layer and formation
of vortices. Direct coupling between the vortices and a local velocity °uctuation associated with an acoustic ¯eld
is relatively weak; that is, the rate of energy exchange is in some sense small. However, the interaction between
the velocity (or pressure) °uctuation and the initial portion of the shear layer is normally a basic reason that
feedback exists between the unsteady ¯eld in the volume of the combustor and vortex shedding.

It has long been known experimentally that vortices shed in a chamber more e®ectively generate acoustic
waves if they impinge in an obstacle downstream of their origin (Flandro and Jacobs, 1975; Magiawala and Culick,
1979; Flandro, 1986). The ¯rst example of this phenomenon was the solid rocket booster for the Shuttle launch
system in the 1970s. It was that problem that motivated the works just cited, but since then vortex shedding has
been recognized as a mechanism for generating acoustic oscillations in other systems as well, notably the booster
motors on the Space Shuttle and on the Ariane 5.

1.5. Physical Characteristics of Combustion Instabilities. Owing to the di±culty of making direct
measurements of the °ow ¯eld within a combustion chamber, virtually all that is known about combustion
instabilities rests on close coordination of experiment and theory. The subject is intrinsically semi-empirical,
theoretical work being founded on observational data both from full-scale machines and laboratory devices.
Conversely, the theoretical and analytical framework occupies a central position as the vehicle for planning
experimental work and for interpreting the results. The chief purpose of this section are to summarize brie°y the
most important basic characteristics of observed instabilities; and to introduce the way in which those observations
motivate the formulation of the theoretical framework.

In tests of full-scale propulsion systems, only three types of data are normally available; obtained from pressure
transducers, accelerometers, and strain gauges. Measurements of pressure are most direct but are always limited,
and often not possible when the necessary penetration of the enclosure to install instruments is not allowed. Hence
the unsteady internal pressure ¯eld is often inferred from data taken with accelerometers and strain gauges. In
any case, because it is the fundamental variable of the motions, the pressure will serve here as the focus of our
discussion.

Figure 1.4a and 1.4b is an example of a fully developed instability, shown with its power spectral densities. The
well-de¯ned peaks re°ect the clear presence of several frequencies in the waves, the larger amplitudes occurring
at the lower frequencies, as commonly happens. A substantial background of broad-band noise is of course
always present due to turbulent °uctuations of the °ow, noise emission by combustion processes, and possibly
other unsteady motions such as °ow separation. Some recent laboratory tests have shown that the level of
noise depends on the presence and amplitude of combustion instabilities, but the cause is unknown and no such
observations exist for full-scale combustors.
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(a)

(b)

Figure 1.4. Waveform and Spectrum for an Instability in the Caltech Dump Combustor

Much of these lectures is devoted to understanding the origins of the behavior illustrated by the examples
in Figures 1.3 and 1.4. The classical theory of acoustics has provided the basis for under standing combustion
instabilities since early recognition that some unexpected observations could be traced to pressure oscillations.
Many basic results of classical acoustics have been applied directly and with remarkable success to problems of
instabilities. It is often taken for granted that well-known acoustics formulas should be applicable|their use can
in fact be justi¯ed on fundamental grounds. However, in the ¯rst instance, it is surprising that they work so well,



Combustion Instabilities in Solid Propellant Rocket Motors 

 

RTO-EN-023 11 - 11 

because the medium is far from the ideal uniform quiescent gas assumed in the classical acoustics of resonating
chambers.

A combustion chamber contains a non-uniform °ow of chemically reacting species, often present in condensed
as well as gaseous phases, exhausting through a nozzle that is choked in rockets, ramjets, and afterburners.
Moreover, the °ow is normally turbulent and may include regions of separation. Yet estimates of the frequencies
of oscillations computed with acoustics formulas for the natural modes of a closed chamber containing a uniform
gas at rest commonly lie within 10{15 percent or less of the frequencies observed for combustion instabilities, if
the speed of sound is correctly chosen.

There are three main reasons that the classical view of acoustics is a good ¯rst approximation to wave
propagation in combustion chamber: (1) the Mach number of the average °ow is commonly small, so convective
and refractive e®ects are small; (2) if the exhaust nozzle is choked, incident waves are e±ciently re°ected, so for
small Mach numbers the exit plane appears to be nearly a rigid surface; and (3) in the limit of small amplitude
disturbances, it is a fundamental result for compressible °ows that any unsteady motion can be decomposed into
three independent modes of propagation, of which one is acoustic (Chu and Kovazsnay 1956). The other two
modes of motion are vortical disturbances, the dominant component of turbulence, and entropy (or temperature)
waves. Hence even in the highly turbulent non-uniform °ow usually present in a combustion chamber, acoustic
waves behave in good ¯rst approximation according to their own simple classical laws. That conclusion has
simpli¯ed enormously the task of gaining qualitative understanding of instabilities arising in full-scale systems as
well as in laboratory devices.

Of course, it is precisely the departures from classical acoustics that de¯ne the class of problems we call
combustion instabilities. In that sense, this book is concerned chie°y with perturbations of a very old problem,
standing waves in an enclosure. That point of view has signi¯cant consequences; perhaps the most important is
that many of the physical characteristics of combustion instabilities can be described and understood quite well
in a familiar context. The remainder of this chapter is an elaboration of that conclusion.

The most obvious evidence that combustion instabilities are related to classical acoustic resonances is the
common observation that frequencies measured in tests agree fairly well with those computed with classical
formulas. Generally, the frequency f of a wave equals its speed of propagation, a, divided by the wavelength, ¸:

f =
a

¸
(1.1)

On dimensional grounds, or by recalling classical results, we know that the wavelength of a resonance or normal
mode of a chamber is proportional to a length, the unobstructed distance characterizing the particular mode in
question. Thus the wavelengths of the organ-pipe modes are proportional to the length, L, of the pipe, those of
modes of motion in transverse planes of a circular cylindrical chamber are proportional to the diameter, D, and
so forth. Hence (1.1) implies

f » a

L
longitudinal modes

f » a

D
transverse modes

(1.2 a, b)

There are two basic implications of the conclusion that the formulas (1.2 a, b), with suitable multiplying
constants, seem to predict observed frequencies fairly well: evidently the geometry is a dominant in°uence on
the special structure of the instabilities; and we can reasonably de¯ne some sort of average speed of sound in
the chamber, based on an approximation to the temperature distribution. In practice, estimates of a use the
classical formula a =

p
°RT with T the adiabatic °ame temperature for the chemical system in question, and

with the properties ° and R calculated according to the composition of the mixture in the chamber. Usually,
mass-averaged values, accounting for condensed species, seem to be close to the truth. If large di®erences of
temperature exist in the chamber, as in a °ow containing °ame fronts, nonuniformities in the speed of sound
must be accounted for to obtain good estimates of the frequencies.

Even for more complicated geometries, notably those often used in solid rockets, when the simple formulas
(1.2 a, b) are not directly applicable, numerical calculations of the classical acoustic motions normally give good
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approximations to the natural frequencies and pressure distributions. Thus quite generally we can adopt the
point of view that combustion instabilities are acoustical motions excited and sustained in the ¯rst instance by
interactions with combustion processes. That the classical theory works so well for estimating frequencies and
distributions of the unsteady motions means that computation of those quantities is not a serious test of a more
comprehensive theory. What is required ¯rst of a theory of combustion instabilities is a basis for understanding
how and why combustion instabilities di®er from classical acoustics.

In particular, two global aspects of minor importance in most of classical acoustics, are fundamental to
understanding combustion instabilities: transient characteristics and nonlinear behavior. Both are associated
with the property that with respect to combustion instabilities, a combustion chamber appears to an observer
to be a self-excited system: the oscillating appear without the action of externally imposed forces. Combustion
processes are the sources of energy which ultimately appear as the thermal and mechanical energy of the °uid
motions. If the processes tending to dissipate the energy of a °uctuation in the °ow are weaker than those adding
energy, then the disturbance is unstable.

1.6. Linear Behavior. When the amplitude of a disturbance is small, the rates of energy gains and losses
are usually proportional to the energy itself which in turn is proportional to the square of the amplitude of the
disturbance; the responsible processes are said to be linear because the governing equations are linear in the °ow
variables. An unstable disturbance then grows exponentially in time, without limit if all processes remain linear.
Exponential growth of the form A0e

®t, where A0 is the amplitude of the initial small disturbance, is characteristic
of the initial stage of an instability in a self-excited system, sketched in Figure 1.5(a). In contrast, the initial
transient in a linear system forced by an invariant external agent grows according to the form 1¡ e¡¯t, shown in
Figure 1.5(b). The curve e®t is concave upward and evolves into a constant limiting value for a physical system
only if nonlinear processes are active. However, the plot of 1 ¡ e¡¯t is concave downward and approaches a
limiting value for a linear system because the driving agent supplies only ¯nite power.

(a) (b)

Figure 1.5. Transient behavior of (a) Self Excited Linearly Unstable Motions; (b) Forced Mo-
tions.

Data of the sort reproduced in Figure 1.4 leave no doubt that the unstable motions in combustion chambers
are self-excited, having the characteristics shown in Figure 1.5(a). The physical origin of this behavior is the
dependence of the energy gains and losses on the motions themselves. For combustion instabilities, the `system'
is the dynamical system whose behavior is measured by the instrument sensing the pressure oscillations. Thus, in
view of earlier remarks, the dynamical system is in some sense the system of acoustical motions in the chamber
coupled to the mean °ow and combustion processes (recall Figure 1.1).

It is a fundamental and extremely important conclusion that by far most combustion instabilities are motions
of a self-excited dynamical system. Probably the most signi¯cant implication is that in order to understand fully
the observed behavior, and how to a®ect it and control it, one must understand the behavior of a nonlinear system.
When the motion in a combustion chamber is unstable, except in unusual cases of growth to destruction, the
amplitude typically settles down to a ¯nite value: the system then executes a limiting motion, usually a periodic
limit cycle. For practical applications, it is desirable to know how the amplitude of the limit cycle depends on the
parameters characterizing the system. That information may serve as the basis for changing the characteristics
to reduce the amplitude, the goal in practice being zero. In any case, good understanding of the properties of the
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limit cycle will also provide some appreciation for those variables which dominate the behavior and to which the
motions may be most sensitive, a practical matter indeed.

Our global view, then, is that a combustion instability is an oscillatory motion of the gases in the chamber,
which can in ¯rst approximation be synthesized of one or more modes related to classical acoustic modes. The
mode having lowest frequency is a `bulk' mode in which the pressure is nearly uniform in space but °uctuating
in time. Because the pressure gradient is everywhere small, the velocity °uctuations are nearly zero. This mode
corresponds to the vibration of a Helmholtz resonator obtained, for example, by blowing over the open end of
a bottle. The cause in a combustion chamber may be the burning process itself, or it may be associated with
oscillations in the supply of reactants, caused in turn by the variations of pressure in the chamber.

Structural vibrations of a solid rocket are not normally in°uential, but an instability of the bulk mode (there
is only one bulk mode for a given geometry) has often been a problem in motors designed for use in space vehicles.
In those cases, the term L*-instability has been used because the stability of the mode is predominantly a function
of the L* of the motor and the mean pressure (Sehgal and Strand 1964). The instability is associated with the time
lag between °uctuations of the burning rate and of mass °ux through the nozzles: that time lag is proportional
to the residence time, and hence L*, for °ow in the chamber. L*-instabilities occur in motors quali¯ed for space
°ight because they arise in the lower ranges of pressure at which such rockets operate.

Whatever the system, most combustion instabilities involve excitation of the acoustic modes, of which there
are an in¯nite number for any chamber. The values of the frequencies are functions primarily of the geometry and
of the speed of sound, the simplest examples being the longitudinal and transverse modes of a circular cylinder,
with frequencies behaving according to 1.2 a, b. Which modes are unstable depends on the balance of energy
supplied by the exciting mechanisms and extracted by the dissipating processes. We consider here only linear
behavior to illustrate the point.

In general the losses and gains of energy are strongly dependent on frequency. For example, the attenuation
due to viscous e®ects typically increases with the square root of the frequency. Other sources of energy loss
associated with interactions between the oscillations and the mean °ow tend to be weaker functions of frequency.
That is the case, for example for re°ections of waves by a choked exhaust nozzle. The gains of energy usually
depend in a more complicated way on frequency.

The sources of energy for combustion instabilities i.e. the mechanisms responsible for their existence, present
the most di±cult problems in this ¯eld. For the present we con¯ne our attention to qualitative features of energy
exchange between combustion to unsteady motions. For example, the magnitude of the energy addition due
to coupling between acoustic waves and combustion processes for a solid propellant normally rises from some
relatively small quasi-steady value at low frequencies, passes through a broad peak, and then decreases to zero
at high frequencies. Recent experimental results suggest that °ames may exhibit similar behavior (Pun 2001).
Energy is transferred to a pressure oscillation having a particular frequency at a rate proportional to the part of
the coupling that is in phase with the pressure at that frequency.1 Figure 1.6 is a schematic illustration of this
sort of behavior.

In Figure 1.6, the gains exceed the losses in the frequency range f1 < f < f2. Modes having frequencies in that
range will therefore be linearly unstable. An important characteristic, typical of combustion chambers generally,
is that in the lower ranges of frequency, from zero to somewhat above the maximum frequency of instability, the
net energy transfer is a small di®erence between relatively larger gains and losses. That implies the di±culty,
con¯rmed by many years' experience, of determining the net energy °ow accurately. Unavoidable uncertainties in
the gains and losses themselves become much more signi¯cant when their di®erence is formed. That is the main
reason for the statement made earlier that analysis of combustion instabilities has been useful in practice chie°y
for predicting and understanding trends of behavior rather than accurate calculations of the conditions under
which a given system is unstable. The ultimate source of all of these di±culties is the fact, cited in Section 1.1, is
the property that the motions in question consume and contain only small portions of the total energy available
within the system. Hence in both laboratory tests and in operational systems one is confronted with determining
the characteristics of essentially small disturbances imbedded in a complicated dynamic environment.

1It is possible, due to the behavior of the phase angle, that in a range of high frequencies the combustion processes may in fact
extract energy from the acoustic waves and hence contribute to the losses of energy.
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Figure 1.6. Qualitative Dependence of (a) Energy Gains and Losses; and (b) the Frequency
Response of a Combustor.

The best and most complete data illustrating the preceding remarks have been obtained with solid propellant
rockets. There are several reasons for that circumstance. First, the ignition period | the time to cause all of the
exposed propellant surface to begin burning | is relatively short and the average conditions in the chamber quickly
reach their intended values. Unless oscillations are severely unstable, and growing rapidly during the ignition
transient, there is a good opportunity to observe the exponential growth characteristic of a linear instability. The
measurements shown in Figures 1.4(a) and (b) are good examples.

Secondly, it is probably true that more e®ort has been spent on re¯ning the measurements and predictions
of linear stability for solid rockets than for other systems because of the expense and di±culty of carrying out
replicated tests. There is no practical, routine way of interrupting and resuming ¯rings and it is the nature of
the system that an individual motor can be ¯red only once. Particularly for large motors used in space launch
vehicles, successive ¯rings involve great expense. Development by empirical trial-and-error is costly and there is
considerable motivation to work out methods of analysis and design applicable to individual tests.

1.6.1. Gains and Losses of Acoustic Energy; Linear Stability. It is a general result of the theory of linear
systems that if a system is unstable, a small disturbance of an initial state will grow exponentially in time:

amplitude of disturbance » e®gt (1.3)

where ®g > 0 is called the growth constant. If a disturbance is linearly stable, then its amplitude decays expo-
nentially in time, being proportional to e¡®dt and ®d > 0 is the decay constant. The de¯nition (1.3) implies that
for a variable of the motion, say the pressure, having maximum amplitude p̂0 in one cycle of a linear oscillation:

p0(t) = p̂0e®g(t¡t0) (1.4)
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where p̂0 is the amplitude at time t = t0. Then if p
0
1, p

0
2 are the peak amplitudes at time t1, t2 as indicated in

Figure 1.7,

p̂2
p̂1
=
p0(t = t2)
p0(t = t1)

=
e®g(t2¡t0)

e®g(t1¡t0)
= e®g(t2¡t1) (1.5)

The logarithm of (1.5) is

log
p̂2
p̂1
= ®g(t2 ¡ t1) (1.6)

In practice, t2¡ t1 is taken equal to the period ¿ , the time between successive positive (or negative) peaks. Then
the logarithm of the ratio p̂2=p̂1 for a number of pairs of successive peaks is plotted versus the time t1 or t2 at
which the ¯rst or second peak occurs. The line is straight, having slope ®g.

Whatever the system, the analytical treatment of linear stability is essentially the same. There is really only
one problem to solve: ¯nd the growth and decay constants and the frequencies of the modes. Determining the
actual mode shapes is part of the general problem, but is often not essential for practical purposes. Typically, both
the frequency and the mode shape for small-amplitude motions in a combustion chamber are so little di®erent
from their values computed classically as to be indistinguishable by measurement in operating combustors. By
\classical" we mean here a computation according to the equations of classical acoustics for the geometry at hand,
and with account taken of large gradients in the temperature, which a®ect the speed of sound. The presence
of combustion processes and a mean °ow ¯eld are not accounted for explicitly, but it may be necessary for
satisfactory results, to include a good approximation to the boundary condition applied at the exhaust nozzle,
particularly if the average Mach number is not small.

Figure 1.7. Exponential Growth of a Linearly Unstable Motion (Perry 1968)

Hence the linear stability problem is really concerned with calculations of the growth and decay constants
for the modes corresponding to the classical acoustic resonances. An arbitrary small amplitude motion can,
in principle, be synthesized with the results, but that calculation is rarely required for practical applications.
Results for the net growth or decay constant have been the central issue in both theoretical and practical work.
In combustors, processes causing growth of disturbances and those causing decay act simultaneously. Hence an
unstable disturbance is characterized by a net growth constant that can be written ® = ®g ¡ ®d. Because the
problem is linear, the growth constants can quite generally be expressed as a sum of the contributions due to
processes accounted for in the formulation, as for example:

® := ®g ¡ ®d = (®)combustion + (®)nozzle + (®)mean °ow + (®)condensed + (®)structure + ¢ ¢ ¢ (1.7)

The labels refer to processes of interaction between the acoustic ¯eld and combustion, the nozzle, the mean
°ow, condensed species, the containing structure,.... Structural interactions comprise not only the vibrations
mentioned earlier as a necessary part of the POGO instability, but also quite generally any motions of mechanical
components, including propellant. For example, in large, solid propellant rockets, motions of the viscoelastic
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material of the grain may be a signi¯cant source of energy losses through internal dissipation (McClure, Hart,
and Bird 1960).

The stability boundary|the locus of parameters marking the boundary between unstable (® > 0) and stable
(® < 0) oscillations|is de¯ned by ® = 0 in (1.7). That statement is a formal rendition of the physical condition
that the energy gained per cycle should equal the energy lost per cycle:

®g = ®d (1.8)

Usually the main source of energy is combustion and in terms of the contributions shown in (1.7), this relation
becomes

(®)combustion = ¡(®)nozzle ¡ (®)mean °ow ¡ (®)condensed ¡ (®)structure (1.9)

There are situations in which the acoustic/mean °ow interactions may provide a gain of energy. That is, energy
is transferred from the average °ow to the unsteady motions (as happens, for example, in wind instruments and
sirens), but there is no need to consider the matter at this point.

As simple as it appears, equation (1.7) de¯ning ®, and its special form (1.8) de¯ning the stability boundary,
are basic and extremely important results. There is no evidence, for any propulsion system, contradicting the
view that these results are correct representations of actual linear behavior. Di±culties in practice arise either
because not all signi¯cant processes are accounted for, or, more commonly, insu±cient information is available to
assign accurately the values of the various individual growth or decay constants.

Figure 1.8. Stability Boundary for a Laboratory Gas-Fueled Rocket (Crocco, Grey, and Harrje)

As examples, Figure 1.8 shows stability boundaries computed for longitudinal oscillations in a gas-fueled
laboratory rocket motor (Crocco, Grey, and Harrje 1960) and Figure 1.9 shows the results of calculations for a
large, solid propellant rocket (Beckstead 1974). Those results illustrate the two uses mentioned above for the
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formula (1.9). In the case of the gas-¯red rocket, the calculations contained two parameters not known from
¯rst principles, namely n and ¿ arising in the time-delay model of the interactions between combustion and the
acoustic ¯eld. All other parameters de¯ning the geometry and the average °ow ¯eld were known. The purpose of
the work was to compare the calculations with measurements of the stability boundary to infer values of n and ¿ .

Figure 1.9. Predicted Stability Boundary for a Large Solid Propellant Rocket Motor, and the
Separate Contributions to ®d and ®g. (Beckstead 1974)

The purpose of the results reproduced in Figure 1.9 was to predict the stability of a full-scale motor prior to
test ¯ring. In that case, all of the parameters appearing in (1.7) must be known. Usually some of the information
is available only from ancillary laboratory tests, notably those required to characterize the coupling between
propellant combustion and the acoustic ¯eld.

Indeed, an important application of the formulas (1.11) and (1.12) is to do exactly that for a laboratory device
called the \T-burner". It is not necessary to restrict attention to the stability boundary if good measurements of
the growth constant can be made. Then if all the losses can be computed, one can ¯nd the value of the growth
constant due to combustion (or, more generally all energy gains) as the di®erence

®combustion = ®¡ ®losses (1.10)

Results for ®combustion can either be adapted for use directly in computing the stability of a motor; or they can
be interpreted with models of the combustion processes to obtain better understanding of unsteady combustion.
That procedure has been used extensively to assess the combustion dynamics of solid propellants and to investigate
trends of behavior with operating conditions and changes of composition.

The growth constant has a simple interpretation beyond that given by 1.10 as the slope of a semi-logarithmic
plot of the peak amplitudes versus time: twice ® is the fractional rate of change of time-averaged energy in the
classical acoustic ¯eld. We will prove the result more rigorously in Chapter 3 but this interpretation is so central
to all problems of linear stability that it is useful to have it in hand from the beginning. By the de¯nition of ®,
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both the pressure and velocity oscillations have the time dependence

p0 » e®t cos!t; u0 » e®t sin!t
multiplied by their spatial distributions. The acoustic energy density is the sum of the local kinetic energy,
proportional to u02, and potential energy, proportional to p02:

K.E. » e2®t cos2 !t; P.E. » e2®t sin2 !t
If we assume that the period of oscillation, ¿ = 2¼=!, is much smaller then the decay rate, 1=®, then the values of
these functions averaged over a cycle of the oscillation are proportional to e2®t. Hence the acoustic energy density
is itself proportional to e2®t. Integrating over the total volume of the chamber we ¯nd that the total averaged
energy hEi in the acoustic ¯eld has the form

hEi = hE0ie2®t (1.11)

where hE0i is a constant depending on the average °ow properties and the geometry. We then ¯nd directly from
(1.11) the result claimed:

2® =
1

hEi
dhEi
dt

(1.12)

Another elementary property worth noting is that 1=® is the time required for the amplitude of oscillation to
decay to 1=e of some chosen initial value. Also, the fractional change of the peak value in one cycle of oscillation
(t2 ¡ tl = ¿ = 2¼=!) is

jp02j ¡ jp01j = ±jp0jm » e®t1 ¡ e®t2 = e®t2
h
e®(t1¡t2) ¡ 1

i
where j jm denotes the magnitude of the peak amplitude. We assume as above that the fractional change in one
period ¿ is small so

e®(t1¡t2) ¼ 1 + ®(t1 ¡ t2) = 1 + ®¿
The amplitude itself is approximately proportional to e®t2 or e®t1 and we can write the fractional change as

±jp0jm
jp0jm ¼ ®¿ = ®

f
(1.13)

where f is the frequency in cycles per second, f = 1=¿ . The dimensionless ratio f=® is a convenient measure of
the growth or decay of an oscillation. According to the interpretation of 1=® noted above, (1=®)=¿ = f=® is the
number of cycles required for the maximum amplitudes of oscillation to decay to 1=e or grow to e times an initial
value.

The ratio ®=f must be small for the view taken here to be valid. Intuitively, ® must in some sense be
proportional to the magnitude of the perturbations of the classical acoustics problem. We will ¯nd that the most
important measure of the perturbations is a Mach number, ¹Mr, chacterizing the mean °ow; for many signi¯cant
processes, ®=f equals ¹Mr times a constant of order unity. Roughly speaking, then, the measured value of ®=f is
an initial indication of the validity of the view that a combustion instability can be regarded as a motion existing
because of relatively weak perturbations of classical acoustics.

1.7. Nonlinear Behavior. It is a fundamental and extremely important conclusion that combustion in-
stabilities are motions of a self-excited nonlinear dynamical system. Probably the most signi¯cant implication
is that in order to understand fully the observed behavior, and how to a®ect or control it, one must ultimately
understand the behavior of a nonlinear system. When the motion in a combustion chamber is unstable, except
in unusual cases of growth to destruction, the amplitude typically settles down to a ¯nite value: the system then
executes a limiting motion, usually a periodic limit cycle. For practical applications, it is desirable to know how
the amplitude of the limit cycle depends on the parameters characterizing the system. That information may
serve as the basis for changing the characteristics to reduce the amplitude, the goal in practice being zero. In any
case, good understanding of the properties of the limit cycle will also provide some appreciation for those variables
which determine the behavior and to which the motions may be most sensitive, a practical matter indeed.

Rarely do the motions in a combustion chamber exhibit clear limit oscillations of the sort commonly encoun-
tered with simpler mechanical systems. Figure 1.3 and 1.4illustrate the point. It appears that combustion devices
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are subject to in°uences, probably not easily identi¯ed, that prevent constant frequencies and amplitudes in the
limit motions. The motions seem not to be limit cycles in the strict sense. However, experience gained in the
past few years suggests that the deviations from the well-de¯ned behavior of simpler systems are normally due
to secondary in°uences. There are several possibilities, although not enough is known about the matter to make
de¯nite statements. Recent analysis (Burnley, 1996; Burnley and Culick, 1999) has demonstrated that noise,
and interactions between random and acoustical motions can cause departures from purely periodic limit cycles
appearing very similar to those found in pressure records for operating combustors. The random or stochastic
motions are likely associated with °ow separation, turbulence, and combustion noise.

Probably other causes of departures from strictly periodic limit cycles are associated with the parameters
characterizing steady operation of a combustor; and with `noise' or random °uctuation of °ow variables. As we
have already emphasized, the unsteady motions require only a negligibly small part of the energy supplied by the
combustion processes. Relatively minor variations in the combustion ¯eld, due, for example, to small °uctuations
in the supplies of reactants, may alter the rates of energy transfer to instabilities and hence a®ect features of a
limit cycle. Similarly, adjustments in the mean °ow, notably the velocity ¯eld and surface heat transfer rates, will
directly in°uence the unsteady ¯eld. Laboratory experiments clearly show such phenomena and considerable care
is required to achieve reproducible results. In solid propellant rockets, the internal geometry necessarily changes
during a ¯ring. That happens on a time scale much longer than periods of unsteady motions, but one obvious
result is the decrease of frequencies normally observed in tests. Because there is ample reason to believe that
the phenomena just mentioned are not essential to the global nonlinear behavior of combustion instabilities, we
ignore them in the following discussion.

1.7.1. Linear Behavior Interpreted as the Motion of a Simple Oscillator. Intuitively we may anticipate that
nonlinear behavior may be regarded in ¯rst approximation as an extension of the view of linear behavior described
in the preceding section, made more precise in the following way. Measurement of a transient pressure oscillation
often gives results similar to those shown in Figures 1.5(a). The frequency in each case varies little, remaining
close to a value computed classically for a natural resonance of the chamber, and the growth of the peak amplitude
during the initial transient period is quite well approximated by the rule for a linear instability, e®t. Thus the
behavior is scarcely distinguishable from that of a classical linear oscillator with damping, and having a single
degree of freedom. The governing equation for a simple mass (m)= spring (k)= dashpot (r) system is

m
d2x

dt2
+ r

dx

dt
+ kx = 0 (1.14)

It is surely tempting to model a linear combustion instability by identifying the pressure °uctuation, p0, with the
displacement x of the mass. Then upon dividing (1.14) by m and tentatively replacing x by p0, we have

d2p0

dt2
+ 2®

dp0

dt
+ !20p

0 = 0 (1.15)

where 2® = r=m and the undamped natural frequency is !0 =
p
k=m. The familiar solution to (1.15) has the

form of the records shown in Figures 1.5(a), p0 = p̂0e®t cos−t where − = !0
p
1¡ (®=!0)2 and ½̂0 is the value of

p0 at t = 0.

The preceding remarks suggest the course we should follow to investigate the linear behavior of combustion
instabilities, and indeed is the motivation behind the general view described earlier. But this is purely descriptive
heuristic reasoning. No basis is given for determining the quantities `mass,' `damping coe±cient,' and `spring
constant' for the pressure oscillation. The procedure for doing so is developed in Chapter 4; the gist of the matter
is the following, a brief description of the method used later to analyze combustion instabilities.

According to the theory of classical acoustics for a sound wave, we may identify both kinetic energy per unit
mass, proportional to the square of the acoustic velocity u0, and potential energy per unit mass, proportional to
the square of the acoustic pressure p0. The acoustic energy per unit volume is

1

2

Ã
¹½u02 +

p02

¹½¹a2

!
(1.16)
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where ¹½ and ¹a are the average density and speed of sound. This expression corresponds to the formula for the
energy of a simple oscillator,

1

2
(m _x2 + kx2) (1.17)

Now consider a stationary wave in a closed chamber. Both the velocity and pressure °uctuations have spatial
distributions such that the boundary condition of no velocity normal to a rigid wall is satis¯ed. Hence the local
pressure p0 in equation (1.15) must depend on position as well as time. However, the frequency !0 depends on the
geometry of the entire chamber and according to equation (1.12), we should be able to interpret 2® in equation
(1.15) as the fractional rate of change of averaged energy in the entire volume. Therefore, we expect that the
parameters m, k, and r implied by the de¯nitions ® = r=2m and !0 = k=m must be related to properties of the
entire chamber. The approximate analysis used in most of this book is based partly on spatial averaging de¯ned
so that the properties ascribed to a particular mode are local values weighted by the spatial distribution of the
mode in question, and averaged over the chamber volume.

Locally in the medium, the `spring constant' is supplied by the compressibility of the gas, and the mass
participating in the motion is proportional to the density of the undisturbed medium. When the procedure of
spatial averaging is applied, both the compressibility and the density are weighted by the appropriate spatial
structure of the acoustical motion. As a result, the damping constant and the natural frequency are expressed in
terms of global quantities characterizing the °uctuating motion throughout the chamber. We will ¯nd rigorously
that in the linear limit, an equation of the form (1.15) does apply, but instead of p0 itself, the variable is ´n(t),
the time dependent amplitude of an acoustic mode represented by

p0n = ¹p´n(t)Ãn(~r) (1.18)

where ¹p is the mean pressure and Ãn(~r) is the spatial structure of the classical acoustic mode identi¯ed by the
index ( )n. Hence the typical equation of motion is

d2´n
dt2

+ 2®n
d´n
dt

+ !2n´n = 0 (1.19)

The constants ®n and !n contain the in°uences of all linear processes distinguishing the oscillation in a
combustion chamber from the corresponding unperturbed classical motion governed by the equation

d2´n
dt2

+ !2n0´n = 0 (1.20)

if dissipation of energy is ignored. Because damping in a mechanical system causes a frequency shift, and the
actual frequency is not equal tot he unperturbed value, !n0.

For technical reasons not apparent at this point, it is convenient to regard the linear perturbing process as a
force Fn(´n; _́n) is acting on the `oscillator' and equation (1.19) is written

d2´n
dt2

+ !2n0´n = F
L
n (´n; _́n) (1.21)

The superscript ( )Lidenti¯es the `force' as linear, and for simplicity !2n0 is written !
2
n. We will consistently use

the symbol !n for the unperturbed classical acoustic frequency. If there is no linear coupling between the modes
(typically linear coupling is small), the force FLn consists of two terms, one representing the damping of the mode
and one the frequency shift:

FLn = ¡¢!2n´n + 2®n _́n (1.22)

Equations (1.21) and (1.22) produce (1.19) with !2n replaced by !
2
n +¢!

2
n.

With the above reasoning we have heuristically constructed equation (1.21) as the fundamental equation for a
linear combustion instability corresponding to a classical acoustic mode of the chamber. Its simplicity masks the
fact that a great amount of e®ort is required to determine realistic functions FLn (´n; _́n) applicable to the motions
in a combustion chamber. The approximate analysis developed later provides a framework for accommodating
all linear processes but does not contain explicit formulas for all of them. Most importantly, there are terms
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representing interactions between combustion processes and the unsteady motions, but their computation requires
modeling the mechanisms that cause combustion instabilities. Some of the purely gasdynamical processes, arising
with coupling between mean and °uctuating motions, are given explicitly.

According to classical acoustic theory, a closed chamber of gas at rest has an in¯nite number of normal or
resonant modes. The spatial structures (mode shapes) and resonant frequencies are found as solutions to an
eigenvalue problem. A general motion in the chamber, having any spatial structure, can then be represented as a
linear superposition of the normal modes. The process of spatial averaging, leading to equation (1.20), amounts
to representing any motion as an in¯nite collection of simple oscillators, one associated with each of the normal
modes. That interpretation holds as well for equation (1.21) except that now each mode may su®er attenuation
(®n < 0) or excitation (®n > 0). It is this point of view that allows natural extension of the analysis to nonlinear
behavior.

1.7.2. Nonlinear Behavior Interpreted as the Motion of a Nonlinear Oscillator. In view of the observation that
measurements often show development of limit cycles like those shown in Figure ??, it is tempting simply to add
a nonlinear term to the oscillator equation (1.21) and assume that a combustion instability involves only a single
mode. Thus, for example, we could add to the right-hand side a force FnLn = c1´

2
n + c2 _́

2
n + c3´n _́n + c4j´nj+ ¢ ¢ ¢

where the constants c1,... may be chosen by ¯tting the solution to data. Culick (1971) showed that quite good
results could be obtained with this approach applied to limited data. Figure 1.10 shows one example. Of course
this is a purely ad hoc approach and provides no means of computing the coe±cients from ¯rst principles.

Figure 1.10. An Example of Fitting T-Burner Data with the Model of a Simple Nonlinear
Oscillator (Culick 1971).
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Subsequently, Jensen and Beckstead (1973) applied that procedure to extensive data taken in laboratory
devices intended for measuring the characteristics of unsteady burning of solid propellants. The chief result was
that the data could be matched equally well with rather broad ranges of the constants, and no particular kind of
nonlinearity seemed to dominate the motions. Consequently, representation with a single mode was not successful.
Even though analysis of pressure records for limit cycles often showed relatively small (it seemed) amounts of
harmonics of the principle mode, it appeared necessary to account for two modes at least, with coupling due to
nonlinear processes.

In other contexts, that conclusion is surely not surprising. The development of a small amplitude compressive
disturbance into a shock wave is the oldest and most familiar example in gasdynamics. Steepening of a smooth
wave arises primarily from two nonlinear in°uences: convection of the disturbance by its own motion, and depen-
dence of the speed of sound on the local temperature, itself dependent on the wave motion. A good approximation
to the phenomenon is obtained if viscous stresses and heat conduction are ignored. If the disturbance is regarded
as a combination of various modes, the °ow of energy from modes in the low frequency range to those having
higher frequencies is favored by the nonlinear gasdynamic coupling. The rapid growth of the higher-frequency
modes having shorter wavelengths produces the steepening, eventually limited, in real °ows, by the actions of
various e®ects. In a combustion chamber possible consequences of nonlinear combustion processes cannot be
ignored.

In extreme cases of combustion instabilities, particularly in liquid and solid rockets, the approximately si-
nusoidal motions, substantially systems of stationary waves, may be absent or evolve into a di®erent form. The
motions then appear to be weak shock waves, or pulses having measurable width, propagating in the chamber. In-
stabilities of that type are commonly produced subsequent to excitation by ¯nite pulses. Examples were observed
early in tests of liquid rockets, typically involving motions mainly transverse to the axis, identi¯ed as `spinning'
transverse modes. Their presence is particularly harmful due to the greatly increased surface heat transfer rates
causing unacceptable scouring of the chamber walls.

The corresponding cases in solid rockets usually are longitudinal motions. They rarely occur in large motors
and seem to have been ¯rst observed in pulse testing of laboratory motors (Dickenson 1962; Brownlee 1964).
An example is reproduced in Figure 1.11 (Brownlee, 1964). Often this sort of instability is accompanied by a
substantial increase of the mean pressure, seriously a®ecting the steady performance of the motors. The primary
cause of the pressure rise is evidently the increased burn rate, although precisely why the rate increases is not well
understood. More recently, these pulsed instabilities have been the subject of successful comparisons between
laboratory test results and numerical simulations (Baum and Levine 1982; Baum, Levine, and Lovine 1988).
Figure 1.12 shows an example of their results.

For combustion instabilities, the situation is very di®erent from that for shock waves in a pure gas because
the processes governing the transfer of energy from combustion to the gasdynamical motions cannot be ignored
and in general depend strongly on frequency. Indeed, it may happen, as seems sometimes to be the case for
combustion of solid propellants, that the coupling may cause attenuation of higher frequencies. For that reason,
the tendency for steepening by the gasdynamics is partially compensated by the combustion processes, may be
linear or nonlinear. As a result, in a chamber, a limit cycle may be formed having very closely the spatial
structure and frequency of the unstable mode (commonly, but not always, the fundamental mode) and relatively
modest amounts of higher modes. It is that behavior that seems to be important in many combustion problems,
explaining in part why the approach taken in the approximate analysis has enjoyed some success.

Naturally the preceding is a greatly simpli¯ed and incomplete description of the events actually taking
place in a given combustion chamber. The essential conclusion that nonlinear gasdynamical processes are partly
augmented and partly compensated by combustion processes seems to be an important aspect of all combustion
instabilities. It appears that the idea was ¯rst explicitly recognized in work by Levine and Culick (1972, 1974),
showing that realistic limit cycles could be formed with nonlinear gasdynamics and linear combustion processes.
Perhaps the most important general implication of those works is that the nonlinear behavior familiar in °ows of
pure nonreacting gases is not a reliable guide to understanding the nonlinear behavior in combustion chambers.

For nonlinear problems, the governing equations obtained after spatial averaging have the form



Combustion Instabilities in Solid Propellant Rocket Motors 

 

RTO-EN-023 11 - 23 

Figure 1.11. Steep-fronted Waves Observed in Solid Propellant Rocket Motors (Brownlee, 1964)

Figure 1.12. A Comparison of Observed and Simulated Steep-Fronted Waves in a Solid Pro-
pellant Rocket Motor. (a) Observed; (b) numerical Simulation (Baum and Levine, 1982).

d2´n
dt2

+ !2n´n = F
L
n (´n; _́n) + F

NL
n (´i; _́i) (1.23)

where FNLn (´i; _́i) is the nonlinear force depending on all amplitudes ´i, including ´n itself. Thus we may regard a
combustion instability as the time-evolution of the motions of a collection of nonlinear oscillators, one associated
with each of the classical acoustic modes for the chamber. In general the motions of the oscillators may be coupled
by linear as well as nonlinear processes, although linear coupling seems rarely to be important. The analytical
framework established by the dynamical system (1.23) will serve throughout this book as the primary means for
analyzing, predicting, and interpreting combustion instabilities.

Representation of unsteady motions in a combustion by expansion in acoustic modes (`modal expansion')
and application of spatial averaging was ¯rst accomplished by Culick (1961, 1963) using a Green's function. The
work by Jensen and Berkstead cited above motivated extension to nonlinear behavior (Culick 1971 and 1975;
and Zinn and Powell (1970a, 1970b) ¯rst used an extension of Galerkin's method to treat nonlinear behavior is
in liquid rockets; the method was subsequently extended to solid rockets by Zinn and Lores (1972). In practice,
application of a method based on modal expansion and spatial averaging is normally useful only if a small number
of modes is required. Yet there are a large number of experimental results showing the presence of steep-fronted
waves, often su±ciently steep to be interpreted as shock waves. Hence an analysis of the sort followed here would



Combustion Instabilities in Solid Propellant Rocket Motors 

 

11 - 24 RTO-EN-023 

seem to be quite seriously limited unless one is prepared to accommodate a large number of modes. That is,
one would expect that wave motions exhibiting rapid temporal changes and large spatial gradients must contain
signi¯cant amounts of higher modes. However, results have also shown that due to fortunate phase relationships,
a surprisingly small number of modes serves quite well even to represent many features of waves having steep
fronts. The method gives quite a good approximation to both the limiting motions and the transient development
of disturbances into weak shock waves.

1.8. Analysis and Numerical Simulations of Combustion Instabilities. In these lectures, the vehicle
for uni¯cation is a theoretical framework originating in the late 1960s and early 1970s with treatments of insta-
bilities in liquid rockets (Culick 1961, 1963; Powell 1968; Zinn and Powell 1968; and Powell and Zinn 1971) and
in solid rockets (Culick 1971, 1976). Those analyses di®ered from previous work mainly in their use of a form
of spatial averaging, in some instances related to Galerkin's method, to replace the partial di®erential equations
of conservation by a system of ordinary di®erential equations. The dependent variables are the time-dependent
amplitudes of the acoustic modes used as the basis for series expansion of the unsteady pressure. It is the process
of spatial averaging over the volume of the chamber that produces a formulation convenient for handling models
of widely di®erent geometries and physical processes. Consequently, in return for the approximate nature of the
analysis (for example, the series must be truncated to a ¯nite number of terms), one obtains both convenience
and a certain generality of applications not normally possible when partial di®erential equations are used directly.
In general form, this approach is applicable to all types of combustors. Di®erent systems are distinguished by
di®erent geometries and the forms in which the reactants are supplied (liquid, solid, gas, slurry, : : : ). Those
di®erences a®ect chie°y the modeling of the dominant physical processes.

Some analysis of combustion instabilities has customarily accompanied experimental work as an aid to inter-
preting observations. The paper by Grad (1949) treating instabilities in solid rockets is probably the ¯rst entirely
theoretical work dealing with small amplitude acoustical motions in a mean °ow ¯eld with combustion sources.
During the 1950s and 1960s, many theoretical works were published on the subject of oscillations in solid rockets
(Bird, McClure, and Hart 1963; Cheng 1954, 1962; Hart and McClure 1959, 1965; Cantrell and Hart 1964; Culick
1966) and in liquid rockets (Crocco 1952, 1956, 1965; Crocco and Cheng 1956; Reardon 1961; Culick 1961, 1963;
Sirignano 1964; Sirignano and Crocco 1964; Zinn 1966, 1968, 1969; Mitchell, Crocco, and Sirignano 1969). It
was during that period that the view of combustion instability as a perturbation of classical acoustics was ¯rst
extensively developed.

Most of the analyses cited in the previous paragraph (those by Sirignano, Zinn and Mitchell are notable
exceptions) were restricted to linear problems. Their chief purpose was to compute the stability of small amplitude
motions. Indeed, since the earliest works on combustion instabilities, practical and theoretical considerations were
directed mainly to the general problem of linear stability: the reasoning is that if the system is stable to small
disturbances (e.g. associated with `noise' always present in a combustion chamber) then undesirable instabilities
cannot arise. There is a °aw in that reasoning: the processes in a combustion chamber are nonlinear, so a linearly
stable system may in fact be unstable to su±ciently large disturbances. In any case, oscillations in combustors
reach limiting amplitudes due to the action of nonlinear processes. Hence understanding nonlinear behavior
is the necessary context in which one can determine what changes to the system may reduce the amplitudes.
Ultimately, a complete theory, and therefore understanding, must include nonlinear behavior, a subject covered
at considerable length in these lectures, largely within the context cited in the ¯rst paragraph.

Recognition of the practical implications of the de¯ciencies of a view founded on linear behavior motivated
the development of the technique of \bombing" liquid rocket chambers in the 1960s by NASA in its Apollo
program. The idea is to subject an operating combustion chamber to a succession of increasingly large disturbances
(generated by small explosive charges) until sustained oscillations are produced. Then the size of the disturbance
required to \trigger" the instability is evidently a measure of the relative stability of the chamber. Another measure
is the rate of decay of oscillations subsequent to a pulse injected into a linearly stable system; the method was
invented by NASA during the development of engines for the Apollo vehicle in the 1960's. What constitutes the
correct `measure' of relative stability cannot of course be determined from experiments alone, but requires deeper
understanding accessible only through theoretical work. This is part of the reason that the nonlinear analyses
cited above were carried out; also an extensive program of numerical calculations was supported. Owing to the
limitations of computing resources at that time, those early numerical calculations involved solutions to quite
restricted problems, commonly sectors or annular regions of chambers. It was not possible to compute what are
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now usually called `numerical simulations.' Moreover, the results were often plagued|and were thus sometimes
rendered invalid|by noise in the computations or di±culties with stability of the numerical techniques.

While the intense activities on instabilities in liquid rockets nearly ceased in the early 1970s, work on numerical
simulation of combustion instabilities in solid rockets began (Levine and Culick 1972, 1974; Kooker 1974; Baum
and Levine 1982). In contrast to the case for liquid rockets, it is a good approximation to ignore chemical
processes within the cavity of a solid rocket, an enormous simpli¯cation. Combustion occurs largely in a thin
layer adjacent to the solid surface and its in°uences can be accommodated as boundary conditions. Consequently,
with the growth of the capabilities of computers, it became possible to carry out more complete computations
for the entire unsteady ¯eld in a motor. Also during this period appeared the ¯rst attempt to compare results of
an approximate analysis with those obtained by numerical simulation for the `same' problem (Culick and Levine
1974).

The main idea motivating that work was the following. At that time, the size and speed of available com-
puters did not allow numerical simulations of three-dimensional problems, nor in fact even two-dimensional or
axisymmetric cases. Moreover, no numerical calculations had been done of one-dimensional unsteady transient
motions in a solid rocket, with realistic models of the combustion dynamics and partial damping. Approximate
analysis of the sort mentioned above could be applied, in principle, to instabilities in arbitrary geometries, but
owing to the approximations involved, there were no means of determining the accuracy of the results. Exper-
imental data contain su±ciently large uncertainties that comparisons of analytical results with measurements
cannot be used to assess accuracy of the analysis. Hence it appeared that the only way to assess the limitations
of the approximate analysis must be based on comparison with numerical simulations. It was also important
to con¯rm the validity of the approximate analysis because of its great value for doing theoretical work and for
gaining general understanding of unsteady motions in combustion chambers.

That reasoning remains valid today. Despite the enormous advances in computing resources, it is true here as
in many ¯elds, that approximate analysis still occupies, and likely always will, a central position. A major reason
is its great value in providing understanding. Numerical simulations advanced considerably during the 1980s and
important work is in progress. Accomplishments for systems containing chemical processes, including combustion
of liquid fuels, within the chambers far exceed those possible twenty years ago (see, for example, Liang, Fisher,
and Chang 1988; Liou, Huang, and Hung 1988; Habiballah, Lourm¶e, and Pit 1991; Kailasanath, Gardner, Boris,
and Oran 1987a, b; and Menon and Jou 1988).

Numerical simulations of °ows in solid rockets have begun to incorporate current ideas and results of tur-
bulence modeling (Dunlop et al. 1986; Sabnis, Gibeling, and McDonald 1985; Tseng and Yang 1991; Sabnis,
Madabhushi, Gibeling, and McDonald 1989). The results have compared quite favorably with cold °ow exper-
iments carried out using chambers with porous walls. In the past ¯ve years, much progress has been made in
numerical simulations (some based on the ideas of LES) of solid rockets including computations of the burning
propellant. There is no reason to doubt that eventually it will be possible to produce accurate computations of
the steady turbulent °ow ¯elds in virtually any con¯guration expected in practical applications.

Remarkable success has also been achieved with computations of unsteady one-dimensional motions in straight
cylindrical chambers (e.g. Baum and Levine 1982; Baum, Lovine, and Levine 1988; Tseng and Yang 1991).
Particularly notable are the results obtained by Baum, Lovine, and Levine (1988) showing very good agreement
with data for highly nonlinear unsteady motions induced in the laboratory by pulses. Although parameters in the
representation of the unsteady combustion processes were adjusted as required to produce the good comparison,
a minimal conclusion must be that the numerical methods are already quite satisfactory.

Numerical simulation will always su®er some disadvantages already mentioned. In addition, because each
simulation is only one case and the problems are nonlinear, it is di±cult to generalize the results to gain funda-
mental understanding. However, the successes of this approach to investigating complicated reacting °ows are
growing rapidly and the methods are becoming increasingly important for both research and practical applica-
tion. Historically, we have seen that the three aspects of the subject|experimental, analytical, and numerical
simulations|began chronologically in that order. There seems to be no doubt that, as in many other ¯elds of
modern engineering, the three will coexist as more-or-less equal partners. We have therefore tried in this book
to balance our discussion of methods and results of experiment, analysis, and numerical simulation with much
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less emphasis on the last. The integration of those activities forms a body of knowledge within which one may
understand, interpret and predict physical behavior.

It is important to realize that experimental information about unsteady motions in combustion chambers is
very limited. Commonly only measurements of pressure are available. Accelerometers and strain gauges mounted
in a chamber may provide data from which some characteristics of the pressure ¯eld can be inferred. Quantitative
surveys of the internal °ow are virtually unavailable owing to the high temperatures, although optical methods
are useful in laboratory work to give qualitative information and, occasionally, useful quantitative data.

As a practical matter we are therefore justi¯ed in assuming only that the pressure is available, at most as a
function of time and position on the surface of the chamber. That restriction is a fundamental guide to the way in
which the theory and methods of analysis for combustion instabilities are developed. Throughout these lectures
we emphasize determining and understanding the unsteady pressure ¯eld. The approximate analysis constituting
the framework in which we will discuss instabilities is based on the pressure as the primary °ow variable.
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2. MECHANISMS OF COMBUSTION INSTABILITIES IN SOLID PROPELLANT ROCKETS

Identifying the ultimate cause, the mechanism, is probably the single most important task in understanding
combustion instabilities in full-scale systems. The term \mechanism" refers to that phenomenon or collection of
processes forming the chief reason that the instability exists. There may be more than one mechanism, but in
any case the ultimate reason for an instability is that energy is transferred from the combustion processes, or the
mean °ow, to unsteady organized motions. Instabilities are commonly observed as nearly periodic oscillations
having time-dependent amplitudes. As a practical matter, the chief goal is to reduce the amplitudes to acceptable
levels. For that purpose it is essential ¯rst to understand the cause, and then to work out the connections with
the chamber dynamics.

In the context de¯ned by Figure 1.1, understanding the mechanism of combustion instabilities is equivalent to
understanding combustion dynamics. It is essential to keep in mind always that by its very de¯nition, combustion
involves chemistry and chemical kinetics within the setting of °uid mechanics. Depending on the mechanism,
one or another of those phenomena may dominate. Hence, for example, in some cases involving the dynamics of
vortex formation and shedding, we may ¯nd that burning is not a central issue. Nevertheless, the presence of
the °ow ¯eld supporting the vortices is itself produced by combustion of reactants. We may therefore justi¯ably
include the phenomenon under the general label `combustion dynamics.' Hence all of the topics comprising the
subject of mechanisms belong largely to the feedback path in Figure 1.1.

In some respects combustion in a solid propellant rocket chamber appears to be less complicated than those
in any other type of combustor. The burning processes occur almost entirely within a thin region, normally
less than one millimeter thick, adjacent to the propellant surface. Although some residual combustion normally
occurs when the propellant contains aluminum or other metallic additives, there is no unambiguous evidence that
combustion within the volume contribute signi¯cantly as a cause of combustion instabilities. We assume that to
be the case, leaving surface combustion and purely °uid mechanical processes as origins of possible mechanisms.
Of these, the dynamics of surface combustion is by far the most common and most important. The four chief
mechanisms for instabilities in solid rockets are shown in Figure 2.1 surface combusiton; vortices shed from
obstacles, or growing out of the shear °ow at a burning surface; and residual combustion within the volume of
the chamber.

Vortex shedding from obstacles|as in the Shuttle solid rocket booster|or vortices produced at the lateral
surface (`parietal vortex shedding')|as in the Ariane 5 solid rocket booster|have been identi¯ed as mechanisms
only in large motors. Excitation of acoustic waves by vortices is of course a well-known phenomenon in a wide
variety of wind musical instruments. The idea that vortices might be responsible for oscillations in a combustion
chamber seems to have been proposed ¯rst by Flandro and Jacobs (1974).

The dynamics of residual combustion far from the burning surface|mostly likely associated with aluminum
or other metal fuel additives not completely burned at the surface|remains poorly understood. Although some
attention has been given to the process (Beckstead et al. 1987), analysis of the dynamics is incomplete. No
calculations exist assessing quantitatively the possible contributions of residual combustion to linear stability
relative to those of surface combustion.

On the other hand, there is no disagreement that the dynamics of surface combustion is the dominant
mechanism causing most combustion instabilities in all types and sizes of solid rockets. We therefore begin with
examination of that subject.

2.1. Qualitative Interpretation of the Basic Mechanism. The dependence of the burning rate of a
solid propellant on the pressure has long been known as a basic characteristic. Experiment and theory for the
combustion of gases shows that the reaction rates vary strongly with both pressure and temperature. It is
therefore not surprising that the burning rate of a solid is sensitive to the impressed temperature and pressure.
What is surprising is that the processes in the gas and condensed phases in the vicinity of the burning conspire to
produce a dynamical response that exhibits signi¯cant dependence in frequency. That dependence on frequency
is particularly important because the response is noticeably greater over a rather broad frequency range. In
that range the combustion processes act to amplify pressure °uctuations. That is, some of the energy released
in chemical reactions is transformed to mechanical energy of motions in the combustion products. Hence the
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Figure 2.1. The Four Chief Mechanisms for Combustion Instabilities in Solid Rockets

dynamics in the feedback path, Figure 1.1, not only provide feedback but as well promote an unstable situation.
The burning surface exhibits a sort of resonant behavior but without possessing the inertial and spring-like (i.e.
restoring) forces associated with a resonant oscillating system such as the simple mass/spring oscillator.

Since the cavity in a solid rocket possesses its own acoustic resonances, we have a system of two coupled
oscillators. If it should happen that resonant frequencies of the two oscillators are close, then conditions clearly
favor an instability. That is the situation commonly occurring in solid rockets and is the simplest direct explanation
for the widespread occurrences of instabilities in tactical as well as strategic motors (Blomshield, 2000).
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Figure 2.2. Sketch of Unsteady Combustion of a Solid Propellant.

The essential features of the combustion processes dominating the behavior just described have long been
known. Figure 2.2 is an idealized sketch showing the main characteristics of a burning composite propellant
exposed to an oscillation of the chamber pressure. Ultimately it is the °uctuation of velocity of gases leaving the
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combustion zone that is the essence of the mechanism. Oscillation of the °ow causes the surface to appear like an
acoustic speaker, a source of acoustic waves. Formally the situation is identical to a planar array of monopoles
having zero-average mass °ow superposed on the mean °ow due to combustion. However, the °uctuation of
burning rate is a consequence of °uctuating heat transfer so we can understand the mechanism best by examining
the behavior of the temperature pro¯le. We will treat the propellant as if it were a perfectly homogeneous
isotropic material in the condensed phase, and use the one-dimensional approximation throughout, from the cold
condensed solid phase to the hot combustion products. Figure 2.3 is one frame from a ¯lm of a burning solid
taken at the Naval Weapons Center, suggesting that any sort of one-dimensional approximation seems unrealistic.
That is certainly true on the scale of the particle sizes (10s to 100s of microns).

However, the variations of velocity and pressure in the chamber occur over distances of the order of the
chamber dimensions. Hence it is appealing to suppose that for interactions between the combustion zone and the
motions in the chamber, the heterogeneous character propellant can be overlooked in some sense. For example,
the linear burning rate of a propellant is measured without special regard for spatial variations on the small scale
of compositional inhomogeneities. No instrument is available to do otherwise. That is not to say, of course, that
the burn rate and the combustion dynamics do not depend on spatial variations of the condensed material and
the gas phase. Rather, we suppose that dependence in such things as the size distribution of oxidizer particles
is accounted for by some sort of averaging procedure. Thus, parameters appearing in the ¯nal results, such as
A and B in the QSHOD model discussed here, must depend on, for example, an average particle size. No rules
exist for the averaging, but recently impressive progress has been made for computed steady burning rates using
a \random packing" model (Kochevets and Buckmaster, 2001). In all of the discussion here we adhere to the
one-dimensional approximation with no attention paid to the possible errors incurred. In any case it seems a
good assumption that if the averaging process is good, any errors are likely to be less than uncertanties arising
in other parts of the problem, e.g. material properties.

The mechanism in question here is, broadly speaking, primarily a matter of combustion dynamics. It has
become customary to represent the mechanism quantitatively as an admittance or response function. We use the
latter here, de¯ned generally as the °uctuation of mass °ow rate of gases departing the combustion zone to the
imposed °uctuation of either the pressure or the velocity. Thus the response function for pressure °uctuations
(referred to as the \response to pressure coupling") is de¯ned in dimensionless form as R½,

R½ =
m0=m
p0=p

(2.1)

where ( )0 means °uctuation and ( ) is an average value. The average value m represents the average in°ow of
mass due to the propellant burning. In almost all applications, the °uctuations are steady sinusoidal oscillations,
written as

m0

m
=
m̂

m
e¡i!t

p0

p
=
p̂

p
e¡i!t

(2.2)a,b

and

R½ =
m̂=m

p̂=p
(2.3)

where ^( ) denotes the amplitude of the oscillation, including both magnitude and phase. Because generally the
oscillations of mass °ux rate are not in phase with the pressure oscillations, the function Rp is complex, the real
part representing that part of m0=m that is in phase with the pressure oscillation.

Although the response function for pressure coupling is most commonly used, there is a second response
function, that associated with velocity coupling, which under some practical circumstances is far more important.
At this point we con¯ne our remarks to the response function for pressure coupling.

A simple interpretation of the response function explains its importance to combustion instabilities. According
to the de¯nition (2.3), a pressure oscillation having amplitude p̂=p produces the oscillation m̂=m of mass °ow into
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the chamber
m̂

m
= R½

p̂

p
(2.4)

Viewed from the chamber, the boundary appears then to oscillate. The apparent motion is entirely analogous to
that of a speaker or piston mounted at the boundary. Thus pressure waves are generated in a fashion similar to
that of a loudspeaker in a room. Through a complicated sequence of processes whose details are not germane here,
those waves coalesce and combine with the original pressure waves causing the °uctuations of mass °ux. Whether
or not that merging process augments or subtracts from the existing wave system in the chamber depends on
the phase between m̂ and p̂. The part of m̂ in-phase with p̂ increases the amplitude of the wave system and is
therefore destabilizing. For a particular motor, the tendency for combustion dynamics to drive instabilities is
proportional to the integral of Rp over the entire area of burning surface. Hence it is clearly essential to know
the response function for the propellant used.

Figure 2.3. View of the Surface of a Burning Solid Propellant Containing Aluminum.

Traditional composite propellants using ammonium perchlorate as oxidizer, as well as advanced propellants
using higher energy oxidizers and binder, burn in qualitatively similar fashion. The interface between the con-
densed and gas phases is fairly well de¯ned, may be dry or wet, and may exhibit local dynamical activity owing to
the presence of solid particles and responsive collections of liquid pools or drops. The dynamics of the interfacial
region is particularly noticeable in microcinematography when the propellant contains aluminum. The metal
collects in molten droplets, mobile and ignitable on the surface; those not fully consumed are carried away by
the gaseous products of the interface. The high temperature at the surface is sustained by a balance between
heat °ow away from the interface, required to heat the cool propellant advancing to the surface; energy required
to e®ect the phase changes at and near the interface; and the heat transfer supplied to the interfacial region
from the combustion zone in the gas phase. It's a delicate balance, easily disturbed by changes in the chemical
processes in the interfacial region, particularly within the subsurface region in the condensed phase. Figure 2.4
is a sketch of the temperature ¯eld, showing also the possible consequences of additional exothermic reactions in
the sub-surface condensed phase. Note that in this ¯gure we imagine that the temperature exists in a spatially
averaged sense. Local variations on the scale of oxidizer particles are smeared out in the averaging procedure and
explicit e®ects of inhomogeneities are absent.
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(a)  Flame Front                                   (b)  Distributed  Combustion

Figure 2.4. Representation of the Temperature Field in a Burning Solid Propellant.

The essentials of the behavior represented macroscopically by response functions can be described as a se-
quence of elementary steps, described here in simpli¯ed form with reference to Figure 2.4:



Combustion Instabilities in Solid Propellant Rocket Motors 

 

RTO-EN-023 11 - 31 

(i) Suppose that for some reason the rate of reactions in the combustion zone increases-perhaps due to a
°uctuation of pressure, or temperature, or to increased local mixing associated with greater intensity of
turbulence locally in the chamber.

(ii) Increased reaction rates produce a rise in the rate of energy release and an increase of temperature of the
combustion zone.

(iii) Due both to radiation and heat conduction, the heat transfer from the combustion zone to the interfacial
region increases, having at least two possible consequences: the temperature at the surface is increased;
and the rate at which condensed material is converted to gas is also increased.

(iv) Because the temperature in the interfacial region rises, so also does the heat °ow to the subsurface region
and further into the solid, tending to cool the interface.

(v) If there are subsurface reactions, the heat °ow will tend to increase their rate, with consequences depending
on the associated energy release (or absorption) rate.

(vi) Exothermic subsurface reactions will act to maintain higher temperature locally, thereby encouraging the
conversion of condensed material to gas at the interface, but also tending to increase the heat °ow to the
cooler solid.

(vii) The net result may be that if the °uctuation of heat °ow, and reduction of temperature, at the interface
does not happen too quickly, the enhanced reaction rate assumed in Step (i) may produce a °uctuation of
mass °ow leaving the surface, that is in phase with the initial perturbation. Hence in this event the entire
process is destabilizing in the sense that the initial disturbance has the result that the disturbed mass °ow
into the chamber tends to augment that initial disturbance.

Whether or not the preceding sequence will be destabilizing depends entirely on details of the processes
involved. Notably, if sub-surface reactions are endothermic, then the sequence (v){(vii) leads to the conclusion
that the reactions may cause the propellant combustion to be less sensitive to disturbances.

The model we will analyze ¯rst is the simplest possible capturing a dominant contribution to the combustion
dynamics. Only unsteady heat transfer in the condensed phase causes true dynamical behavior, i.e. dependence
of the response to pressure coupling. That process must in any case be present. This problem (model) is therefore
the reference always used to assess the possible in°uences of other dynamical processes, in particular, those in
the gas phase and decomposition in the condensed phase. The substance of the model is de¯ned by the following
assumptions:

(i) quasi-steady behavior of all processes except unsteady conductive heat transfer in the condensed phase;
(ii) homogeneous and constant material properties, non-reacting condensed phase;
(iii) one-dimensional variations in space;
(iv) conversion of condensed material to gas phase at an in¯nitesimally thin interface.

The acronym QSHOD for this model derives from the ¯ve letters in assumptions (i){(iii).

During the early years of this subject, from the mid-1950s to the mid-1960s, roughly ten analyses of the
response function were published in the Western literature, giving apparently distinct results. Culick (1968)
showed that, due to the fact that all of the models were based in the same set of assumptions (i){(iv), the results
were dynamically identical. That is, all had the same dependence on frequency and, with appropriate values
for the various parameters involved, give coincident numerical values. Hence the term QSHOD is a useful term
referring to a class of models. Di®erences between the models are associated with di®erent detailed models of the
steady processes, notably the °ame structure in the gas phase.

A di®erent approach to compute the combustion response was taken by Zel'dovitch (1942) in Russia and
elaborated in great depth by Novozhilov (1965, 1973, 1996). The result has come to be known as the Z-N model.
The Z-N representation of the response has certain distinct advantages, most importantly giving convenient
connections between the parameters in the response function and quantities easily measured in steady combustion.
The idea is explained in Section 2.

2.2. Analysis of the QSHOD Model. Analysis of the model sketched in Figure 2.2 amounts to quan-
titative representation of the sequence (i){(iv). Even in the simplest form described here, the problem is too
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complicated for a closed form solution. Apart from recent results obtained numerically for the entire region, cov-
ering the cold solid to the hot combustion products the usual procedure, familiar in many problems of this sort,
is based on solutions found for the separate regions de¯ned above, and matched the results at the interfaces. The
solutions and the matching conditions are based on the one-dimensional equations of motion. In the approach
taken here, the interfaces move, a feature that must be correctly incorporated in the analysis.

The following remarks are based on the review cited above, Culick (1968). Since that time much work has
been done to determine the consequences of relaxing the assumptions on which the following analysis (the QSHOD
model) is based. We will later examine some of those ideas. In this section we assume that the combustion proceeds
as transformation of a condensed phase at a single °at interface to the gas phase, requiring that solutions be
matched at only one interface. We choose a reference system with origin (x = 0) ¯xed2 to the average position
of the interface. Hence the cold unreacted solid material progresses inward from the lift. Figure 2.5 shows this
de¯nition and the matching conditions that must be satis¯ed at the interface. Note that the velocity _xs of the
interface appears explicitly in these conditions and is to be determined as part of the solution to the complete
problem.

v  = m/ρp

ρp (v  - x )

p

p s ρ (v  - x )g s

s

. .

λp

(v  - x )p sρp (cT +H  + Q  )s p g

T
x s-

λg
T
x s+

(v  - x )g sρ p(c T + Q )s g
.
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MASS  FLUX
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Figure 2.5. Reference System and Matching Conditions for the QSHOD Model.

For the simple model used here, the analysis involves only three steps: solution for the temperature ¯eld in the
solid phase; solution for the temperature ¯eld in the gas phase; and matching the two solutions at the interface.
Because the temperature ¯eld is central to the analysis, the ¯nal results should correctly be regarded as a thermal
theory of steady and unsteady combustion of a solid propellant. No di®usive contributions are accounted for and
the pressure is uniform throughout the region considered: the momentum of the °ow does not enter the problem.

(a) Solid Phase

The energy equation for the temperature in the solid phase assumed to have uniform and constant properties,
is

¸p
@2T

@x2
¡mc@T

@x
¡ ½pc@T

@t
= ¡ _Qd (2.5)

where ( ) means time-averaged value; ( )p denotes propellant; c is the speci¯c heat of the solid; m = ½pr is the

average mass °ux in the reference system de¯ned in Figure 2.5; and _Qd is the rate at which energy is released per
unit volume due to decomposition of the solid ( _Qd > 0 for exothermic decomposition). We assume _Qd = 0 here
an assumption to be relaxed in Section 2. It is convenient to use the dimensionless variables

»p =
r

·c
x ; ¿ =

T

T s
(2.6)

2Alternatively, the reference frame may be ¯xed to the instantaneous position of the surface and therefore is not an inertial frame
for the unsteady problem. For the linear problem, it is easy to show the equivalence of the results obtained with the two choices of
reference systems. If more than three regions are treated|e.g. when an additional decomposition zone is included in the condensed
phase|it may be more convenient to take xs = 0 and account for the motions of the remaining interfaces.
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where values at the interface are identi¯ed by subscript s and ·p = ¸p=½pc is the thermal di®usivity of the
propellant. Equation (2.5) becomes

@2¿

@»2
¡ @¿

@»p
¡ ¸p½p
m2c

@¿

@t
= 0 (2.7)

Solution to (2.7) with the time derivative dropped gives the formula for the normalized mean temperature

¿ = ¿c + (1¡ ¿c)e»p (2.8)

satisfying the conditions ¿ = ¿s = 1 at the surface and ¿ c = Tc=T s far upstream (T = Tc) in the cold propellant.

For harmonic motions, with ¿ = ¿ + ¿ 0 and3 ¿ 0 = ¿̂ e¡i!t, ¿̂ being the amplitude, a complex function of
position in the solid material. Substitution in (2.7) leads to the equation for ¿̂(»p), easily solved to give

¿ 0 = ¿̂0e¸»pe¡i!t (2.9)

where ¸ satis¯es the relation

¸(¸¡ 1) = ¡i− (2.10)

and − is the important dimensionless frequency,

− =
¸p½p
m2c

! =
·p
r2
! (2.11)

In order that ¿ 0 ! 0 for x! ¡1, the solution of (2.10) with positive real part must be used; ¸ = ¸r ¡ i¸r and
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i (2.12)a,b

Due to the choice of reference system, ¿̂ in (2.9) is the °uctuation of temperature at the average position
of the interface (»p = 0). However, matching conditions at the interface requires values and derivatives of the
temperature at the interface itself, having position xs and velocity _xs. Values at the interface are calculated with
Taylor series expansions about x = 0; only the ¯rst order terms are retained for the linear problem, and on the
solid side of the interface4:
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(2.13)

Hence the required results for the upstream side of the interface cannot be completed until the interfacial region
is analyzed.

(b) Interfacial Region

Three relations govern the behavior at the interface: conservation of mass and energy, and the law for
conversion of solid to gas. The ¯rst two are established by considering a small control volume placed about
the true burning surface, as sketched in Figure 2.5. The volume is then collapsed to give \jump" conditions
associated with the total unsteady mass and energy transfer in the upstream (s¡) and downstream (s+) sides of
the interface:
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¸
(Ls)

(2.14)a,b

3Note that consistently throughout these notes we use the negative exponential, exp(¡i!t). In some of the literature the positive
exponential is used, so care must be taken when making comparisons of results.

4The temperature is continuous at the interface, but on x = 0, the °uctuations T 00¡ and T 00+ computed from the solutions for

the solid and gas phase need not be continuous.
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The mean gas density ½ near the surface is much smaller than the density of the condensed phase, for cases of
current interest, so the term ½=½p ¿ 1 will hereafter be dropped. For an exothermic surface reaction, the change
Ls = hs+ ¡ hs¡ of the enthalpy is positive and may be viewed as a `latent heat'. The heat °uxes [¸p@T=@x]s¡
and [¸g@T=@x]s+ are respectively °ows of heat from the interface to the condensed phase and to the interface
from the gas phase.

An Arrhenius law has commonly been assumed for the conversion of solid to gas, giving the total surface
mass °ux

ms = Bp
nse¡Es=R0Ts (2.15)

To ¯rst order in small quantities, the perturbed form of (2.15) is

m0
s

m
= Eei!¿1¿ 0s + nse

i!¿2
p0

p
(2.16)

where E = Es=R0Ts is the dimensionless activation energy for the surface reaction. Time delays or lags ¿1 and
¿2 are included in (2.16), but presently there is no way to compute them; hence they will largely be ignored here
except for some results given in Section 2.6.

For steady combustion, the energy balance (2.14)b, with (2.8) substituted for dT=dx, becomesµ
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The linear unsteady part of (2.14)b isµ
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Combination of (2.8) and (2.9) and the appropriate parts of (2.13) gives the formula for the heat transfer into
the condensed phase from the interface:µ
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In this result, the approximation in (2.14)a has been used. Substitution of (2.19) in (2.18) leads to the boundary
condition to be set on the unsteady temperature at the downstream side of the interface:µ
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This results contains two assumptions:

(i) ½g=½p ¿ 1 (x = xs)
(ii) nonreacting condensed phase having constant and uniform properties

Normally, the ¯rst is reasonable. However, the second is restrictive, possibly seriously so according to some
analyses; see Section 2.5. The important point is that (2.20) explicitly contains the transient behavior (the
dynamics) associated with unsteady heat transfer in a benign solid material. If no further dynamics is attributed
to the processes at the interface or in the gas phase, then the response function found with this analysis re°ects
only the dynamics of unsteady heat transfer in the condensed phase. That is the QSHOD result. Hence it is
apparent that the form of the dependence of the response function in frequency will necessarily in this case be
independent of the model chosen for the quasi-static behavior of the gas phase. The details of the model selected
will a®ect only the particular values of parameters appearing in the formula for the response function.

Thus, to complete the analysis, it is best at this stage to choose the simplest possibility. We assume that
the thermal conductivity is uniform in the gas phase and that the combustion processes (i.e. the rate of energy
release per unit volume) are also uniform in a region beginning some distance from the interface and extending
downstream, ending at a location, that is, by de¯nition, the edge of the °ame zone. This is a useful model
containing two simple limits: uniform combustion beginning at the interface; and a °ame sheet, obtained by
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letting the thickness of the combustion zone become in¯nitesimally thin. Figure 2.6 is a sketch of the model.
Analysis of the model for steady burning was given by Culick (1969) with the following results.

x = 0 ix = x fx = x

Tf

Uniform
Combustion

Tc

Ti

Ts

Figure 2.6. Sketch of the Model of a Solid Propellant Burning with Uniform Combustion in
the Gas Phase.

The governing equation for this thermal theory is

mcp
dT

dx
¡ d

dx

µ
¸g
dT

dx

¶
= ½gQf _s (2.21)

where Qf is the energy released per unit mass of reactant mixture (assumed to be constant), ½g is the local
gas density and _s is the local rate of reaction. At the downstream edge of the combustion zone, the boundary
conditions are

T = Tf ;
dT

dx
= 0 (x = xf ) (2.22)a,b

where Tf is the adiabatic °ame temperature. On the interface,

T = Ts (2.23)

and the energy balance at the interface givesµ
¸g
dT

dx

¶
s+

= m
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.24)

For steady combustion, consideration of the energy °ow across the gas phase givesµ
¸g
dT

dx

¶
s+

= m [Qf ¡ cp (Tf ¡ Ts)] (2.25)

On the other hand, integration of (2.21) across the combustion zone, and application of the boundary conditions
(2.22)a,b and (2.23) leads to µ

¸g
dT

dx

¶
s+

=

Z 1

0

½gQf _sdx¡mcp (Tf ¡ Ts) (2.26)

Because Qf is constant, comparison of (2.25) and (2.26) leads to the requirement on the overall reaction rateZ 1

0

½g _sdx = m (2.27)

We assume ¸g constant (an assumption that is easily relaxed) and transform from x to the dimensionless
variable ³:

³ = e
mcp
¸g

x (2.28)
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The energy equation (2.21) becomes

¡³2 d
2T

d³2
= ¤2 (2.29)

where the eigenvalue ¤2 is

¤2 =
¸gQfw

m2c2pTs
(2.30)

and

w = ½g _² (2.31)

Generally, of course, _² and hence w and therefore ¤2 are dependent at least on temperature, so ¤2 is implicitly a
function of ³. However, we assume ¤2 constant, de¯ning the condition of uniform combustion. Then with ³i the
value of ³ at the beginning of the combustion zone (where ignition is assumed to occur) and ³f the value at the
downstream edge of the °ame, the ¯rst integral of (2.29) givesµ

dT

d³

¶
s+

=

µ
³f ¡ ³i
³f³i

¶
¤2 (2.32)

Thus µ
¸g
dT

dx

¶
s+

=
¸gQf
cp

µ
1

³i
¡ 1

³f

¶
w

m
(2.33)

For ³f À ³i, and in the limit of combustion beginning at the solid/gas interface so ³i = 1,µ
¸g
dT

dx

¶
s+

=
¸gQf
cp

w

m
(2.34)

The assumption of quasi-steady behavior implies that the °uctuation of heat transfer at the surface is given
simply by the linearized form of (2.33):µ

¸g
dT

dx

¶0
s+

= mcpT s¤
2

µ
w0

w
¡ m

0

m

¶
(2.35)

We also ¯nd as the linearized form of (2.25):µ
¸g
dT

dx

¶0
s+

= m0 £Qf ¡ cp ¡T f ¡ T s¢¤¡mcp ¡T f ¡ T s¢ (2.36)

This equation gives a formula for the °uctuation of °ame temperature,

T 0f = T
0
s +

m0

m

·
Qf
cp
¡ ¡T f ¡ T s¢¸¡ 1

mcp

µ
¸g
dT

dx

¶0
s+

(2.37)

Substitution of (2.35) for the last term gives the formula for computing T 0f when the combustion is uniform.
In general, T 0f is not equal to the local °uctuation of temperature due to acoustical motions in the gas phase,
the di®erence appearing the temperature °uctuation associated with an entropy wave carried by the mean °ow
departing the combustion zone.

By letting ³i ! ³f , the corresponding results can be obtained for a °ame sheet; see Culick (1969; 2002). We
will consider here only the case of ¯nite combustion zone; the response functions found for the two cases di®er
only in small details.

To progress further, we must specify the form of w = ½g _s; the reaction rate per unit volume. For the quasi-
steady part of the processes, we assume that the mass °ow provided by the surface is well-approximated by the
Arrhenius law (2.15) and its °uctuation is (2.16) with zero time delays,

m0

m
= E

T 0s
T s
+ ns

p0

p
(2.38)

Due to the assumption of quasi-steady behavior, this formula represents the °uctuation of mass °ow throughout
the gas phase.
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Finally, we need an explicit form for w as a function of the °ow variables. To construct a consistent formula
for the reaction rate in the gas phase, we equate the two results for heat transfer to the interface during steady
burning: (2.24), the energy balance generally valid at the interface; and (2.34) found for the special case of
uniform combustion. We ¯nd the expression for w:

w =
cp
¸gQf

m2
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.39)

We assume that the right-hand side can be written as a function of pressure only by approximating the pyrolysis
law m = a(Ts)p

n as

m = apn = b(Ts ¡ Tc)spns (2.40)

so

Ts ¡ Tc =
³a
b
pn¡ns

´ 1
s

(2.41)

Then (2.39) becomes

w =
cp
¸gQf

(apn)2
·
c
³a
b
pn¡ns

´ 1
s

+ Ls

¸
(2.42)

The °uctuation w0 of the reaction rate is then

w0

w
=

³
1¡ Tc

T s

´
¤2

c

cp
w
p0

p
(2.43)

where ¤2 is given by (2.30) for the steady problem,

¤2 =
¸gQfw

m2c2pTs
(2.44)

and

w =

·
2(1 +H) +

cp
c

1¡ ns
n

c

¸
H = ¡ Ls

c(T s ¡ Tc)
(2.45)a,b

Instead of the calculations leading from (2.34) to (2.43) one could as well simply assune w0 » p0. The only
purpose of these remarks is to give an example of relating °uctuations of the reaction rate to the pressure for a
well-de¯ned model of combustion in the gas phase.

(c) Construction of the Response Function

We ¯nd the formula for the response function in the following way:

(i) Substitute the pyrolysis law (2.38) in (2.20) which combines the interfacial conditions for energy and mass
transfer:

1

mcT s

µ
¸g
@T

@x

¶0
st

=

µ
¸+

A

¸

¶
T 0s
T s
+

Ã
cp
c
¡ 1 + LA

1¡ Tc
T s

!
T 0s
T s
+ ns

Ã
L+

1¡ Tc
T s

¸

!
p0

p
(2.46)

where

L =
Ls

cT s

A = (1¡ Tc

T s
)(®s +

Es

RoT s
)

(2.47)a,b
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(ii) Substitute the reaction rate (2.43) into the expression (2.35) for the heat loss from the gas phase:

1

mcT s

µ
¸g
@T

@x

¶0
st

=

µ
1¡ Tc

T s

¶
w
p0

p
¡ cp
c
¤2
m0

m
(2.48)

(iii) Equation (2.46) and (2.48), use the pyrolysis law to eliminate T 0s=T s; this step leaves an equation which
can be rearranged to give the ratio de¯ned to be the response function for pressure coupling:

Rp =
m0=m
p0=p

=

¡
AW +

cp
c ns

¢
+ ns(¸¡ 1)

¸+ A
¸ +

£ cp
c E¤

2 ¡HA+ cp
c ¡ 1

¤ (2.49)

(iv) Write (2.49) in the form

Rp =
c1 + ns(¸¡ 1)
¸+ A

¸ + c2
(2.50)

For the assumed steady burning rate law, m = apn, the °uctuation can be written

Rp =
m0=m
p0=p

= n (2.51)

Thus in the limit of zero frequency (¸ = 1), the right-hand side of (2.50) must equal n, giving the condition
c1

1 +A+ c2
= n

De¯ne B with
c1 = nB

and
c2 = B ¡ (1 +A)

Hence (2.50) becomes

Rp =
nB + ns(¸¡ 1)

¸+ A
¸ ¡ (1 +A) +B

(2.52)
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Figure 2.7. Real and Imaginary Parts of a QSHOD Response Function Computed with Equa-
tion 2.52.

Figure 2.7 shows typical results for the real and imaginary parts of this formulas when ns = 0. Experimental
results given in the following section have long established that the QSHOD model captures a major contribution
to the dynamical behavior, due to unsteady heat transfer in the condensed phase. Thus it is important to
inderstand the preceding analysis. However, even with the large experimental errors associated with all current
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experimental methods, it seems there is little doubt that other dynamical processes cannot be ignored for many
propellants, especially in the range of frequencies above that where the broad peak of the real part of Rb appears.

2.3. Measurements of the Response Function; Comparison of Experimental Results and the
QSHOD Model. For more than forty years, measurement of the response function has been the most important
task is research on combustion instabilities in solid rockets. Without accurate data, the truth of theoretical results
cannot be assessed; predictions and interpretations of instabilities in motors are uncertain; and the ability to screen
propellants for optional behavior is seriously compromised. Unfortunately no entirely satisfactory method exists
for accurate measurements of the combustion response, irrespective of cost. Two recent reports of extended
programs (Caltech MURI, 2002 and UIUC MURI, 2002) have led to this conclusion after ¯ve years' investigation
of the ¯ve main existing methods:

(i) T-burner
(ii) ultrasonic apparatus
(iii) laser recoil method
(iv) magnetohydrodynamic method
(v) microwave technique

A sixth method based on using a burner (e.g. an L* burner) in which bulk oscillations are excited, was not
investigated, partly because it is intrinsically limited to low frequencies.

It is not our purpose here to review these methods; see the two MURI reports; Couty (1999) and references
contained in those works for all discussions of all but the last. The microwave technique was introduced in the
1970's and has been continually improved, but the accuracy of the data remains inadequate, particularly for
metallized propellants for which the method is useless under some conditions.

The central question for modeling and theory is: how good is the agreement between predicted and measured
values? It appears that the ¯rst extensive comparison for this purpose were carried out many years ago (Beckstead
and Culick, 1971) soon after the recognition that all the available models/analyses were equivalent to the QSHOD
(A,B) model. With only two parameters available to adjust the theoretical results to ¯t data, the task of comparing
theory and experiment became manageable. At that time, only T-burner data were available. Figures 2.8 and
2.9 show two results.

Figure 2.8. The real part of the response function vs. the non-dimensional frequency, ®t!=r
2

for A-13 propellant: the solid curve is calculated from the QSHOD formula for the values of A and
B shown; the dashed curves represent the T-burner data at the indicated pressures. (Beckstead
and Culick 1969).

One purpose of the report by Beckstead and Culick was to combine the formula for the QSHOD response
function with results obtained from analyses of the T-burner and the L*-burner to obtain formulas for the
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Figure 2.9. The real part of the response function vs. the non-dimensional frequency for A-35
propellant; the curves were calculated from the QSHOD formula. (Beckstead and Culick 1969).

parameters A and B in terms of measurable quantities. The main conclusion was that unique values of A and B
could not be obtained for a given propellant tested at a chosen value of operating pressure. Consequently, large
di®erences existed between the data and curves of the sort shown in Figure 2.7.

Since that time, many examples of using the A, B model to ¯t data have been given. Most, if not all, approach
the matter as a two-parameter (A and B) curve ¯tted to data for the real part of the response function only.
Strictly, that tactic is incorrect and could produce misleading results. The proper approach requires that the
two-parameter representation be used to ¯t simultaneously the real and imaginary parts of the response function.
There are also cases in which investigators have failed to respect the distinction between the response function
Rp » m0=p0 and the admittance function Ap » u0=p0 de¯ned for velocity °uctuations.

Without attention to both of those points, any comparisons between data and a model are suspect. Despite
those common de¯ciencies, there is no doubt that the QSHOD model cannot and does not represent the dynamics
of actual propellants. One would anticipate even without experimental results that the assumption of quasi-steady
behavior in the gas phase must fail at high frequencies, commonly believed to be around 1000 Hertz and higher.
Moreover, observations of steady combustion have shown that important decomposition processes take place in
the sub-surface zone near the interface of most propellants. Hence at least two improvements of the QSHOD
model should be made.

Before examining examples of more complicated models, we review the essentials of another approach to
deriving the QSHOD model, the Z-N model.

2.4. The Zel'dovich-Novozhilov (Z-N) Model . Zel'dovich (1942) was ¯rst to consider true combustion
dynamics for solid propellants. He was concerned with problems of transient burning|i.e. what happens to
combustion of a propellant when the impressed pressure is changed rapidly|but now explicitly with the response
function. Novozhilov (1965) later used Zel'dovich's basic ideas to ¯nd a formula for the response of a burning
propellant to sinusoidal oscillations of pressure. The result has exactly the same dependence on frequency as the
QSHOD model, i.e. it is identical with the formula obtained by Denison and Baum four years earlier.

The Z-N model incorporates quasi-steady behavior of the burning in a clever and instructive fashion. More-
over, the parameters|there are, of course two corresponding to A and B in the QSHOD model|are so de¯ned
as to be assigned values from measurements of steady combustion of the propellant in question. Hence there is no
need to become enmeshed in the details of modeling the combustion processes in the gas phase. If the measure-
ments could be done accurately, it would be possible to obtain good predictions of the combustion response for
propellants, subject of course to all the assumptions built into the QSHOD model. Unfortunately, the required
quantities are di±cult to measure accurately. Con¯rmation of the results still requires measurements of both the
real and imaginary parts of the response function.
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The condensed phase and interfacial region are treated as described in Section 2.2 for the QSHOD model.
Instead of detailed analysis of the gas phase, that is, construction of a \°ame model", the assumption of quasi-
steady behavior is applied by using relations among the properties of steady combustion, the burning rate and
the surface temperature as functions of the initial temperature of the cold propellant and the operating pressure:

m = m(Tc; p)

Ts = Ts(Tc; p)
(2.53)a,b

The assumption is also made that these functions are known su±ciently accurately that their derivatives can also
be formed, introducing the four parameters

º =

µ
@ lnm

@ ln p

¶
Tc

¹ =
1

T s ¡ Tc

µ
@T s
@ ln p

¶
Tc

k =
¡
T s ¡ Tc

¢µ@ lnm
@Tc

¶
p

rZN =

µ
@T s
@Tc

¶
p

(2.54)a,b,c,d

Subscript ZN is attached to r to distinguish it from the linear burning rate. It is not apparent from the remarks
here why the four parameters (2.54)a,b are signi¯cant in this theory.

Recall from Section 2.2 that the sole reason for analyzing a model of combustion in the gas phase was to
produce a formula for the heat feedback, ¸g(@T=@x)s+, to the interface. That is the central problem here as well:
to ¯nd the heat feedback from considerations of steady combustion and assume (the quasi-steady approximation)
that the form of the result holds under unsteady conditions. The trick is to work out the relation between the
feedback and the properties of steady combustion. It is in that process that the parameters (2.54)a{d appear.

The formula for the response function corresponding to (2.52) is usually written (e.g. Cozzi, DeLuca and
Novozhilov 1999)

Rp =
º + ±(¸¡ 1)

rZN (¸¡ 1) + k
¡
1
¸ ¡ 1

¢
+ 1

(2.55)

where

± = ºrZN ¡ ¹k (2.56)

Comparison of (2.52) and (2.55) gives the formulas connecting the parameters in the two formulations:

A =
k

rZN
; B =

1

k
; n = º ; ns =

±

rZN
(2.57)

Much emphasis has been placed in the Russian literature on the \boundary of intrinsic stability", the locus of
values of (A,B), or (k; rZN ) for which the denominator of (2.55) vanishes. Under those conditions, the propellant
burn rate su®ers a ¯nite perturbation in the limit of a vanishingly small change of pressure. Hence, from measured
values of º and rZN , one can infer how close an actual propellant is to that stability boundary.

With these models, the opportunity exists to use experimental results to determine how accurately the
QSHOD approximations capture the combustion dynamics of solid propellants:

(1) measure º; ¹; k; rZN from tests of steady combustion;
(2) measure the real and imaginary parts of Rp;
(3) compute Rp from (2.52) or (2.55) and compare with (2)

There seem to be no published reports of results for this procedure.
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2.5. Revisions and Extensions of the QSHOD Model. As we have already noted in Section 2.3, even
with the large uncertainties accompanying the experimental results obtained with current methods, it is clear that
the QSHOD model does not capture some important dynamical processes. Considerable e®ort has been devoted
to improving the model, with a certain amount of success, but unfortunately the de¯ciencies in the experimental
procedures still prevent de¯nitive identi¯cation of the most signi¯cant contributions.

Attention has been given to all three of the regions sketched in Figure 2.2. It is important to recognize that
simply changing the model for steady combustion|for example including a ¯nite zone of decomposition in the
solid phase|will not change the form of the QSHOD result. Any additional spatial zones or processes must also
contain new dynamics, a lesson the author learned the hard way (Culick 1969).

Here we will only cite a few of the recent works without giving details of the analyses. To be possibly unseemly
parochial, Section 2.6 contains a more extensive, but brief description of recent work at Caltech.

2.5.1. Additional Dynamics in the Condensed Phase. It seems that three types of processes have been con-
sidered:

1) temperature-dependent thermal properties;
2) phase transitions; and
3) decomposition zones.

Louwers and Gadiot (1999) have reported results for numerical calculations based on a model of HNF. Melting at
some interface within the condensed phase is accounted for, as well as energy released by sub-surface reactions.
Combustion in the gas phase is also treated numerically. The computed response functions also show that the

new processes may increase the values of R
(r)
p by as much as 10{30% and more in the frequency range above the

peak. The peak value is unchanged.

Brewster and his students at the University of Illinois have produced a number of interesting works treating
additional dynamics related to chemical processes in the condensed phase and at the interface (Zebrowski and
Brewster, 1996; Brewster and Son, 1995).

Gusachenko, Zarko and Rychkov (1999) have investigated the e®ects of melting in the response function,
¯nding quite signi¯cant consequences. Lower melting temperatures and larger energy absorption in the melt
layer increase the magnitude of the response function.

Cozzi, DeLuca and Novozhilov (1999) worked out an extension of the Z-N method to account for phase
transition at an in¯nitesimally thin interface in the condensed phase. The analysis includes new dynamics by
allowing di®erent properties of the thermal waves on the two sides of the interface. Additional heat release is
allowed only at the interface of the transition and with conversion of condensed material to gaseous products.
They found that the response function is increased by exothermic reaction at the internal interface and by reduced
temperature of the phase transition.

2.5.2. Additional Dynamics in the Gas Phase. DeLuca (1990; 1992) has given thorough reviews of the various
models used for the dynamics of the gas phase. Most, however, involve no dynamics, so there are no e®ects on
the dependence of the response function on frequency. Truly dynamical e®ects are covered in the next section.

2.6. Modeling the E®ects of Velocity Coupling on the Global Dynamics of Combustion Cham-
bers. The research summarized in this section has been reported in a Ph.D. Thesis (Isella, 2001) and in three
publications (Culick, Isella and Seywert, 1998; Isella and Culick, 2000a; 2000b). Chie°y two general problems
have been addressed:

1) develop a simple general analysis of the combustion dynamics of a solid propellant that will conveniently
accommodate models of the relevant chemical and physical processes, especially those in the interfaced
region; and

2) investigate the in°uences of changes in the combustion response function on observable features of the
combustor dynamics, particularly properties of limit cycles.
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Both of these problems were chosen to try to determine answers to the question: what properties of a solid
propellant are responsible for the often observed sensitivity of the dynamics of a solid rocket to apparently small
(sometimes not well-known) changes in the composition of the propellant. The main conclusions are:

(i) small changes in the composition and thermodynamic properties of a propellant have signi¯cant conse-
quences for dynamical behavior due to pressure coupling only if the propellant is burning near its intrinsic
instability boundary; and

(ii) on the contrary the dynamics due to velocity coupling is evidently signi¯cantly sensitive to small compo-
sitional changes.

If these conclusions are true, then future work in the area of combustion instabilities must include intensive
attention to modeling and measuring the combustion dynamics-i.e. the response function-associated with velocity
coupling.

2.6.1. The Model Framework. One important purpose of the work cited above was to construct a framework
within which it should be possible easily to investigate the consequences of various processes participating in the
combustion of a solid. Representation of the combustion dynamics must be in a form required for analyzing the
global dynamics (Section 3.2). The simplest approach is an extension of the well-known one-dimensional analysis
producing the QSHOD response function for pressure coupling (Culick, 1968; Beckstead et al., 1969; T'ien, 1972;
among many works). Others have followed a similar tack (e.g. Louwers and Gadiot, 1999); the main novel aspect
of this work is inclusion simultaneously of surface physical dynamics (e.g. due to mobility of liquid or solid
particles); dynamics, rather than quasi-steady behavior, of the gas phase; and an elementary representation of
velocity coupling.

On the submillimeter scale, a burning solid is heterogeneous both in the region adjacent to the interface and
in the gas phase where much of the conversion to products takes place. The °ow ¯eld in the chamber, in particular
the unsteady acoustic ¯eld, has spatial variations normally the order of centimeters and larger. The dynamics of
the combustion processes at the surface are formally accommodated as a boundary condition, a response function
of some sort, in the analytical framework for the global dynamics. Hence the vast di®erence in characteristic
scales is accommodated, in principle, by spatially averaging the combustion dynamics. The averaging is done
over a surface in some sense far from the interface so far as the propellant combustion is concerned, but practically
at the interface so far as the ¯eld within the chamber is concerned. In that way, the results of solution to the
\inner" problem of combustion dynamics in the surface region are used as the boundary conditions for solution
to the \outer" problem of the unsteady °ow ¯eld in the chamber.

We are not concerned here with the matter of spatial averaging: we assume it can be done, not necessarily an
easy or obvious process. It's an important part of the general problem. Therefore we proceed from the beginning
with a one-dimensional analysis. The spatial framework for the model shown in Figure 2.10.

Solid

Phase

Gas

Phase

Surface Layer

x
x = 0

0

1
2

Combustion

Zone

r (t)

Figure 2.10. Spatial De¯nition of the Model

The strategy of the analysis is not novel and has been used in many previous works: solve the relevant
equations, or postulate a model, governing the behavior in each of the three regions: solid phase; surface layer;
and gas phase, including the region called `combustion zone' in Figure 2.10. A major purpose of the analysis
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has been to determine the quantitative e®ects of the dynamics in the surface layer and gas phase in the response
function found from the QSHOD model. Hence throughout the work we assume the same model for the solid
phase: the dynamics is due to unsteady heat transfer in a homogeneous material having uniform and constant
properties.

Separate solutions or representations are obtained for each of the three regions. Unspeci¯ed constants or
functions are then eliminated by satisfying boundary conditions and applying matching conditions at the two
interfaces. Initially we intended, or hoped, to ¯nd such a form for the general behavior that di®erent models
for the surface layer and gas phase could easily be substituted and their consequences assessed. That goal has
not been realized and probably is unattainable. Results require detailed numerical calculations before interesting
information is obtained.

2.6.2. Models of the Surface Layer. From the beginning of this work we anticipated, because the dynamics
of the gas phase are fast (owing to the relatively low material density), that the dynamics of the surface region
should have greater e®ect on the combustion response function. We investigated two models of the region:

(i) ¯rst order dynamics represented by a constant time lag; and
(ii) unsteady heat transfer, with material properties di®erent from those in the solid phase.

The idea of using a time lag is of course an old one, having been used by Grad (1949) in the ¯rst analysis
of combustion instabilities, and later by Cheng (1982) as part of the Princeton group's extensive investigations
(nearly a technical love a®air) of time lag representations of unsteady combustion. The result in the present work,
for the °uctuation of mass °ux is

m0=m
p0=p

= Rp
e¡i−tq
1 + (−t)2

whereRp (sometimes written asRb) is the response function found in the QSHOD theory. ThusRp has the familiar
two-parameter (A,B) representation. The dimensionless frequency is − = !·=F 2· is the thermal di®usivity and
r is the linear burning rate and ¿ is the dimensionless time lag, equal to the physical time lag divided by ·=r2.
Figure 2.11 shows a typical result (A = 14; B = 0.85; ¿ = 1.5). The graphs illustrate clearly a basic problem with
a time lag theory: if the time lag is assumed constant (i.e. independent of frequency) the response (in this case
the real part) possesses an oscillatory behavior with period increasing with frequency. Such behavior has never
been observed.
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Figure 2.11. QSHOD Response Function with a Time lag: Thick Line, QSHOD Theory; Thin
Line, QSHOD Model Including a Surface Layer Having First Order (time lag) Dynamics.
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It is true that any response function can be written in a form showing a time lag behavior, but in general the
time lag varies with frequency (Culick, 1968). If the physical model is su±ciently detailed, the dependence of t on
frequency is found as part of the solution. In particular, the QSHOD theory gives ¿(−) such that the amplitude
of the response function decays smoothly for frequencies higher than that at which the single peak occurs.

The second model for the surface is the only one considered for the following results. It is a simple represen-
tation of the dynamical behavior making use of the same solution as that for the homogeneous solid phase, with
two di®erences:

(i) the uniform and constant properties are di®erent from those of the condensed solid material;
(ii) the solution is forced to satisfy matching conditions of continuous temperature and heat transfer at the

interfaces with the condensed phase and the gas phase.

2.6.3. Models of the Gas Phase. In this analysis, all combustion processes are assumed to occur in the gas
phase; upstream only phase changes are accounted for, assumed to take place at the interfaces. We assume
distributed combustion of a simpli¯ed form, a single one-step reaction as previous treatments have used (T'ien,
1972; Huang and Micci, 1990; Lazmi and Clavin, 1992). Solutions must then be found numerically for the steady
and linear unsteady temperature distributions, and subsequently matched to the solution for the surface layer.

2.6.4. Some Results for the Combustion Response Function. Many experimental results exist suggesting that
the responses of actual propellants tend often to be higher than that predicted by the QSHOD model for high
frequencies. Initially the strongest motivation for this work on the response function was to determine in simple
and relatively crude fashion what processes might have greatest e®ect on the values of the pressure-coupled
response at frequencies greater than that at which the peak magnitude occurs. Roughly what that means,
is ¯nding one or more processes having `resonant behavior' or characteristic times in the appropriate range.
Unfortunately the analysis is su±ciently complicated that it has not been possible yet to deduce any explicit
`rules of thumb.' Therefore we present here a few plots of computed results to illustrate the behavior.

Figure 2.12 shows the basic or reference response function computed from the simple QSHOD model. The
in°uences of dynamics in the surface layer and gas phase will be shown relative to that reference.
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Figure 2.12. Reference Case: QSHOD Result with A = 6.0, B = 0.60.

(i) In°uence of Gas Phase Dynamics.

Figure 2.13 is the result when only the dynamics in the gas phase is added to the QSHOD model. The results
are similar to those found by T'ien (1972) and Lazmi and Clavin (1992), not a surprising conclusion. As expected,
the dynamics of the gas phase introduce a single additional peak at a frequency higher than that of the peak
caused by unsteady heat transfer in the condensed phase.

(ii) Combined In°uences of the Dynamics of the Surface Layer and the Gas Phase.
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Figure 2.13. Combustion Response, QSHOD Model with Gas Phase Dynamics

The dynamics of the surface layer itself is the same as those of the condensed phase, but with di®erent values
of the de¯ning parameters Figure 2.14 illustrates the e®ects of changing the surface activation energy and the
material density on a function characterizing the response of heat transfer in the layer. The shape of this function
di®ers from that (Figure 2.12) of the basic response function because it depends on the dependence of several
°ow variables on frequency.
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Figure 2.14. E®ects of Activation Energy and Density on the Dynamics of the Surface Layer.

Finally, Figure 2.15 shows the result for one example of the response function with the dynamics of both the
surface layer and the gas phase accounted for. Evidently for the conditions examined here the dynamics of the
gas phase has more obvious in°uence on the response, in the higher frequency range, than does the surface layer.

One way of summarizing the results is shown in Figure 2.16, showing the contributions to the response
function by the solid (condensed) phase, the surface layer and the gas phase. The overall response function for
the propellant is the product of the three contributions.

2.7. Velocity Coupling, the Combustion Response, and Global Dynamics. The research summa-
rized in this section amounts to using some characteristics of the global combustor dynamics|the amplitudes and
harmonic context of limit cycles|to draw some inferences about qualitative features of the combustion dynamics.
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Figure 2.15. Combustion Response Function Including the Dynamics of the Surface Layer and
the Gas Phase.
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Figure 2.16. The Combustion Response Function Represented as Magnitudes and Phases of
Individual Contributions.

At the beginning of the MURI program, during completion of his dissertation, Burnley (1996) showed that recti¯-
cation associated with a velocity-coupled response function having also a threshold velocity, could be responsible
for nonlinear or pulsed instabilities in a solid rocket motor. This result con¯rmed a conclusion reached several
years previously by Levine and Baum (1983). That was the ¯rst example of using the behavior of the global
dynamics as essentially a diagnostic tool to learn about the in°uences of the combustion dynamics on observable
phenomena.
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In the current work, the main questions at hand have to do with the apparent sensitivity of the global
dynamics to small changes of propellant composition (see remarks (i) and (ii) in the introductory part of the
section). We assume that small changes of composition likely have relatively small e®ects on the magnitude
and phase of the response function. Therefore, we are really investigating the e®ects of small changes in the
response function on the observable global dynamics. Our main conclusion is that the sensitivity of the dynamics
to changes in the response associated with velocity coupling is signi¯cantly greater than that for the response due
to pressure coupling. The implications for directions in future research are substantial.

Isella (2001) and Isella and Culick (2000) have reported the main results. Here we will only cite a couple of
examples. The idea is to use the framework described in Section 3.2 below to compute the growth and limiting
amplitudes for limit cycles. Essentially a modest parameter study has been done, the response function itself
(i.e. the combustion dynamics) being the parameter. Following the tactic ¯rst introduced by Culick, Isella and
Seywert (1998), it is helpful to display the response function, as a function of frequency, and the amplitudes of
the modes forming a limit cycle, as two parts of the same ¯gure, such as Figure 2.17 prepared for a typical case
for the QSHOD response function. The chamber is cylindrical, 0.6 m long, 0.025 m in diameter, operated at a
chamber mean pressure equal to 1:06£ 107 Pa. It is the same motor considered by Culick and Yang (1992).
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Figure 2.17. Results of a Simulation with a QSHOD Combustion Response (Pressure Coupling:
A= 8.0, B = 0.6, n = 0.8).

Figures 2.18{2.20 show results obtained for the same motor and basic combustion response but including,
respectively, a time delay; surface layer dynamics; and dynamics of both a surface layer and gas phase, all
according to the analysis described above.

Owing to the signi¯cantly di®erent dynamics added to the basic QSHODmodel, the three examples illustrated
in Figures 2.18{2.20 show quite di®erent response functions|all, it must be emphasized-representing responses
due to pressure coupling. The question here concerns the sensitivity of the response function to changes of
composition (not the qualitative dynamics) and consequently the sensitivity of the global chamber dynamics.

For the examples chosen, the waveforms in the limit cycles are similar whether or not dynamics of the surface
layer and gas phase are accounted for. This result is due mainly to the substantial attenuation of higher harmonics
due to particle damping (Culick and Yang, 1992). If the damping is reduced, the amplitudes and amounts of
higher harmonics are substantially a®ected, as Figures 2.21 and 2.22 show.
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Figure 2.18. Results of a Simulation Including a Time Delay (¿ = 1.5)
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Figure 2.19. Results of a Simulation Including Dynamics of a Surface Layer

In general, models based on pressure coupling do not show dramatic sensitivity of the combustor dynamics
to small changes of composition. Hence we investigated similar problems with a simple model of the response due
to velocity coupling. The idea is based on the model introduced by Levine and Baum (1988).

Some recent work done on the dynamics resulting from functional form of the equations used in the analysis
by Ananthkrishnan (2002) (See attachment to these notes.) seems to prove that the absolute value function
in itself, as it appears in a simple model of velocity coupling, is su±cient to produce a subcritical bifurcation
(pitchfork) followed by a fold (saddle-node bifurcation).
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Figure 2.20. Results of a Simulation Including Dynamics of a Surface Layer and the Gas Phase
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Figure 2.21. Simulations with Dynamics of the Surface Layer and Gas Phase Included, but
with Reduced Particle Damping (10% Reduction Over the Entire Frequency Range)

In order to analyze the e®ect of velocity coupling on the overall dynamics, the following two relative sensi-
tivities are de¯ned:

SALC

~Rºc
=

1

ALC

@ALC

@ ~Rºc
(2.58)

S®BP~Rºc
=

1

®BP

@®BP

@ ~Rºc
(2.59)

where ALC is the amplitude of the limit cycle (de¯ned at a ¯xed value of ®), and ®BP is the value of the
growth rate at which the unstable fold turns to a stable fold. Equation (2.58) de¯nes the relative sensitivity of



Combustion Instabilities in Solid Propellant Rocket Motors 

 

RTO-EN-023 11 - 51 

1000 1005 1010 1015 1020 1025 1030
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1000 1005 1010 1015 1020 1025 1030

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Non-Dimensional Time Non-Dimensional Time

P
re

ss
u

re
 O

sc
il

la
ti

o
n

P
re

ss
u

re
 O

sc
il

la
ti

o
n

(a) (b)

Figure 2.22. Waveforms for the Limit Cycles (a) Figure 2.20; (b) Figure 2.21.
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Figure 2.23. Bifurcation Diagram

the amplitude of the limit cycle to variations in the velocity coupling coe±cient; equation (2.59) refers to the
sensitivity of the turning point to the same coe±cient.

Figure 2.24 shows a plot of the sensitivities, calculated for the combustion chamber used in the examples of
the previous section, and using a six mode approximation of the system. Note that the sensitivity of the turning
point is very high, and also the sensitivity of the amplitude of the limit cycle is quite large in the range 0.15 to
0.25 of the coupling coe±cient.

We now analyze the same combustor described in Section 2.6 with the introduction of the extra terms due to
velocity coupling. For reference, Figure 2.25 presents the results of the simulation for the system with a combustion
response based on the quasi-steady theory. The top section presents the combustion response function; the vertical
lines mark the non-dimensional frequencies of the acoustic modes of the combustion chamber considered in the
simulations. The bottom half shows the time evolution of the amplitude of each mode. The values of the
parameters are: A = 6.0, B = 0.55, n = 0.50.
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Figure 2.24. Sensitivity of Global Dynamics to Variations of the Coupling Coe±cient
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Figure 2.25. Simulation Results for QSHOD Combustion Response

The ¯rst mode is unstable and rapidly grows to a limit amplitude, while the other modes are all stable, and
draw energy from the ¯rst mode (allowing the system to enter a limit cycle).

Figure 2.24 shows that there is a region of high sensitivity of the amplitude of the limit cycle for variations
in the velocity-coupling coe±cient. Figure 2.26 presents the global response for a small variation of the velocity
coupling coe±cient ( ~Rºc = 0.15 and ~Rºc = 0.165).

The simulation uses the same coe±cients for the pressure coupling as in the results of Figure 2.25, with the
addition of the velocity coupling terms. Figure 2.27 and 2.28 show the pressure trace and the harmonic content
for the same two cases.
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Figure 2.26. Simulations with Velocity Coupling for: (a) ~Rºc = 0.15, (b) ~Rºc = 0.165.
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Figure 2.27. Pressure Trace and Harmonic Content for the Case ~Rºc = 0.15
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Figure 2.28. Pressure Trace and Harmonic Content for the Case ~Rºc = 0.165

In summary, we have shown with these calculations that the global dynamics of a solid propellant motor seem
to be a®ected more signi¯cantly by small changes in the combustion response to velocity coupling then in the
combustion response to pressure coupling. We cannot claim at this time that this is a universal result but the
possible implications are important. It appears in any case that to determine why small changes of propellant
composition seem on a number of occasions to have relatively large e®ects in the chamber dynamics, one must
investigate the phenomenon of velocity coupling. The most serious need is experimental. Attention must be paid
to developing a method for measuring the combustion dynamics associated with velocity coupling.

2.8. Generation of Vorticity and Vortex Shedding. There are two principal connections between vor-
ticity and combustion instabilities in solid rockets:
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1) generation of unsteady vorticity at burning surfaces; and
2) coupling between acoustical motions and large vortices shed at obstacles or growing out of the region
adjacent to the lateral burning surface.

Both of these phenomena have motivated much interesting work|analytical, numerical and experimental. And
although both sorts of behavior fundamentally involve production of vorticity, their characters and the positions
they occupy in the area of oscillatory behavior are very di®erent.

2.8.1. Generation of Vorticity. The generation of vorticity at a burning surface is special to solid rockets. It
occurs whenever there is a variation of pressure °uctuation in the direction tangential to a surface from which
there is average mass °ow normal to surface into the chamber. The vorticity is created because the velocity inward
is perpendicular to the surface|the `no-slip' boundary condition. Imposition of a tangential velocity °uctuation,
due to the non-uniform pressure along the surface, on the average inward °ow constitutes an inviscid mechanism of
vorticity generation. Moreover, conservation of mass in the region close to the surface causes a periodic pumping
action normal to the surface. Both the vorticity generation and the pumping exist at the expense of work done
by the impressed acoustic ¯eld and therefore ultimately appear as losses to the acoustic ¯eld in the chamber.

An oversimpli¯ed and incomplete interpretation of the phenomenon is that the incoming average °ow normal
to the surface gains some kinetic energy because it must acquire the oscillatory motion parallel to the surface.
Thus there is e®ectively a \turning" of the °ow. The inelastic acceleration of the mass °ow causes a loss that is the
unsteady counterpart of the loss accompanying mass injection into a duct °ow. This \°ow-turning loss" was, not
surprisingly, discovered in an analysis of unsteady one-dimensional °ow with mass injection at the lateral surface
(Culick 1970). However, the connection with vorticity generation was not pointed out. It was Flandro (1995) who
clari¯ed the phenomenon in terms of the unsteady production of vorticity, emphasizing the central importance of
the no-slip boundary condition. Flandro carried out the ¯rst rigorous formal analysis of the problem, work that
has since prompted a stream of calculations on the basic problem at hand, as well as variations (e.g. Majdalani,
1999; Kassoy, 1999; Majdalani, Flandro and Roh, 2000; and many others).

Generation of vorticity can provide a signi¯cant contribution to the loss of acoustic energy and hence to
stability. That is why it has become the subject of some controversy in the community of researchers concerned
with combustion instabilities. There is not presently uniform agreement on the true e®ects of vorticity genera-
tion on linear stability (unfortunately). The situation in the analyses is more complicated than that described
super¯cially above. Besides the dissipation of vorticity in the chamber|due both to laminar viscous e®ects and
interactions between the vorticity and turbulence, there are one or two e®ects not mentioned above. Hence de-
pending on interpretation of the basic phenomenon, and also on the particular con¯guration of motor considered,
the next e®ect of vorticity generation may be stabilizing or de-stabilizing. The matter remains unresolved and
deserves resolution, but not in these notes.

We should note that there are also many experimental results related to this problem, some obtained in
university laboratories, and some gained in subscale practical con¯gurations (e.g. Dunlap et al. 1990).

2.8.2. Shedding of Large Scale Vortices. So far as practical consequences are concerned, the production of
large vortices in motors has been far more signi¯cant than has the generation of vorticity discussed above. The
latter is present in all solid rockets, and contributes always to linear stability, although the true quantitative
value remains controversial. On the other hand, while the prediction and in°uences of vortex shedding may
contain uncertainties, it is fair to say that the general characteristics are well-known and settled. Moreover,
vortex shedding has been identi¯ed unambiguously as the mechanism for oscillation observed in several large
motors including the Space Shullte SRM, the Titan IV SRMV and the Ariane 5 SRM. Note that the mechanism
is apparently active only in large motors.

The main reason for that conclusion seems to be the required special near-coincidence between the frequency
of sheding and the frequency of an acoustic mode. Simple laboratory tests demonstrate that basic feature
(Magiawala and Culick 1979; Nomoto and Culick 1982; Aaron and Culick 1984): satisfaction of the condition
requires suitable combinations of geometry, mean °ow speed, thichness of shear layer at the origin of the vortex
shedding and acoustic frequency which depends mainly on the speed of sound and length of chamber.
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Vortex shedding in large motors has appeared in two forms: shedding from obstacles or sharp edges; and
growth out of the region of reletively high shear near the lateral burning surface. Motivated by some experimental
results (Price et al. 1972) involving vortex shedding, Flandro and Jacobs (1974) ¯rst proposed the excitation of
acoustic modes in a chamber due to coupling with vortices shed from an obstacle. Within a couple of years that
process was discovered5 as the mechanism for potentially serious pressure oscillations in the Space Shuttle SRM
(Mathes 1980).

The appearance of vortex shedding in the Titan motors caused formation of a very useful program of extensive
tests of a subscale cold-°ow model of the motor (Dunlap and Brown 1981; Brown et al. 1981). Those tests
produced extensive date for the internal °ow ¯elds, eventually including results that formed part of the basis for
the theoretical work on unsteady vorticity cited in the preceeding section.

In 1986, Flandro reported his collaboration and extension of the analysis he had carried out with Jacobs
twelve years earlier. The work brought together previous ideas of instability of a shear layer as the initiation of
a shear wave; growth and roll-up of the wave into a vortex; propagation of the vortex at a speed something less
than that of the average °ow; and impingement of the vortices on a solid surface, producing a pulse of pressure
that can excite and sustain acoustic waves in the chamber. An acoustic pulse will propagate upstream to the
region of the shear instability, possibly to initiate another disturbance to be ampli¯ed within the layer, later to
develop into another vortex... The process will continue, becoming periodic when the frequency of the vortex
shedding is nearly equal to the acoustic frequency.

When that behavior occurs in a rocket, toroidal vortices are shed from the inner edge of an annular obstruction,
as in the Shuttle and Titan motors, or at the transition from slots to primary cylindrical chamber (Figure 2.29).
The acoustic frequency is determined mainly by the length of the chamber, while the vortex shedding frequency

Figure 2.29. Vortex Shedding from (a) a transition zone in a rocket chamber; and (b) a residual
annulus of inhibitor material (Flandro 1986).

is in°uenced by the local geometry and average °ow. The local geometry determines the growth of the shear
layer and in particular its momentum thickness, a fundamental parameter de¯ning the conditions for instability.
Flandro's analysis|an adaptation of earlier work by Michalle|and experimental results have con¯rmed that
the vortex shedding is characterized by the value of the Strouhal number S at which the growth rate of an
unstable disturbance is maximum. The Strouhal number is de¯ned as the product of shedding frequency fs times
a characteristic length ± divided by a characteristic speed U so the shedding frequency is given by the formula

fs = S
U

±
(2.60)

where S has some value roughly constant and set by the geometry. The frequencies of the acoustic modes are
only weakly dependent on the mean °ow of the Mach number so small but do depend strongly on the geometry.
For a chamber having length L and closed at both ends6, the longitudinal modes have frequencies given by

fa = `¼
a

L
(2.61)

5The initial report of those oscillations prompted the laboratory demonstration reported by Culick and Magiawala (1979).
6A rocket physically closed at one end and exhausting through a choked nozzle appears to acoustic waves as if it is approximately

closed at both ends.
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where a is the speed of sound and ` = 1; 2; : : : identi¯es the mode.

Some interesting results reported by Nomoto and Culick (1982) con¯rm the truth of the preceding ideas for
a simple laboratory apparatus consisting of two annuli ¯tted in a tube, separated by some distance ` and having
a mean °ow in the axial direction. Figure 2.30 shows lines drawn according to (2.60) and (2.61) and data points
indicating the occurences of oscillations without regard to amplitude. For the conditions of the experiment,
signi¯cant oscillations were excited only in regions in which (2.60) and (2.61) are simultaneously satis¯ed. Note
that the separate diagonal lines for shedding frequency given by (2.60) represent cases in which there are 1; 2; 3; : : :
vortices existing between the annuli at any given time.

Figure 2.30. Experimental Results for the Excitation of Acoustic Modes by Vortex Shedding
(Nomoto and Culick 1982).

An important implication of Figure 2.30 is that the dependence of the observed frequency of oscillation may
not have a simple|or obvious|dependence on the length and mean °ow speed during the ¯ring of a solid rocket.
In fact, as several researchers have noted (see, e.g., Vuillot 1995) the shift of frequency with time is a good basis
for distinguishing vortex shedding as the mechanism for oscillations.

Instabilities sustained by feedback involving combustion dynamics almost always show dependence on geom-
etry closely given vy the formulas of classical acoustics: fa » 1=L. Thus, if there is little or no propellant cast at
the head end, the longitudinal frequency is nearly constant in time. Or, if, as usually is the case for large motors,
there are slots and ¯ns at the head end, the e®ective length of the chamber tends to increase during a ¯ring and
hence the frequency of oscillation decreases.

However, according to the results given in Figure 2.30, because the mean velocity may increase during a
burn as more propellant is exposed, the frequency may increase. It is possible (and has been observed) that the
frequency su®ers discrete changes, corresponding to transition between groups of data points shown in Figure ??,
that is the state of the oscillating system shifts because the number of shed vortices present between the shedding
and impingement points changes.

An important and very interesting second cause of vortex shedding was discovered several years ago by Vuillot
and his colleagues at ONERA while investigating the mechanism for unstable oscillations observed in teh Ariane
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5 solid rocket boosters. Subscale ¯rings of motors showed that large vortices were initiated, grew, and were shed
from the region near the burning surface. (Vuillot et al. 1993; Traineau et al. 1997). Hence the phenomenon was
called \parietal vortex shedding" by Lupuglazo® and Vuillot (1996).

In an exemplary systematic research program, the group at ONERA have established most of the character-
istics of parietal vortex shedding relevant to practical applications. Some issues of scale apparently remain, but
very good agreement has been found between subscale hot ¯rings; subscale tests with °ow visualization (Avalon
et al. 2000); and numerical analyses of stability and vortex shedding. LeBreton et al. (1999) have given a good
review of the subject, including some results for the e®ects of resudual combustion.

Possibly the most important aspect of this subject is weak understanding of nonlinear behavior. No simple
explanation exists for the amplitudes of oscillations that can be generated by coupling with the shedding of
large vortices. According to LeBreton et al. (1999) parietal vortex shedding produces, in their examples, larger
amplitudes of oscillation than shedding from an annulus (inhibitor ring in a segmented rocket). It would clearly be
a signi¯cant aid to design and development if a rule of thumb could be constructed to place an upper limit to the
amplitudes of oscillation caused by vortex shedding. Because the mechanism involves conversion of mechanical
energy of the near °ow to acoustic energy, it is likely that the maximum possible amplitudes must be much smaller
than those that can be generated by coupling between acoustics and combustion dynamics.

2.9. Distributed Combustion. Combustion of the major components of a solid propellant|the primary
oxidizer and the binder in the case of composite solids|normally takes place to completion near the burning
surface. Thus the term `distributed combustion' refers to combustion of particles as they are carried into the
volume of the chamber. Almost all attention has been directed to residual combustion of aluminum for which
there is much photographic evidence. Steady combustion of aluminum particles has long been and continues to
be a subject of research owing to its vital importance to the e±ciency and performance of motors, and in the
formation of slag.

Relatively little notice has been taken of the possible in°uences of residual combustion on the stability of
motors. Probably the main reason for this lack of interest is the general view that generally the existence of
combustion instabilities in motors can be satisfactorily explained by other mechanisms, notably the dynamics
of surface combustion and vortex shedding. It appears that the dynamics of aluminum combustion within the
volume of the chamber must provide at most a small contribution to stability. There are at least two reasons
for this conclusion: the available data contain uncertainties too large to allow identi¯cation of the in°uences of
unsteady aluminum combustion; and any destabilizing tendencies of the particles are roughly compensated by
the attenuation of unsteady motions due to the presence of particles. The second is known to be signi¯cant if the
particles are inert and have suitable sizes for the frequencies of the instability in question.

Several works (Marble and Wooten (1970); Dupays and Vuillot 1998) have treated the e®ects of condensation
and vaporization of non-burning particles, on attenuation of acoustic waves. Whether the attenuation is increased
or decreased depends on many factors, including the sizes of particles and the rates at which the particles gain
or lose mass. When, for example, a particle is vaporizing, it seems that in the presence of an acoustic wave,
the phenomenon of `°ow turning' discussed in the preceding section should cause increased attenuation for a
given particle size and frequency. However, while the analysis by Wooten (1966) supports that conclusion, recent
work by Dupays (1999) suggests that the result is not always true. Moreover, suggestions have been made by
investigators of combustion instabilities in ramjets (Sirignano) and in liquid rockets (Merkl) that the process of
vaporization of liquid drops is destabilizing. Those conclusions may be misleading because due to implied direct
connections between the vaporization and burning rates. It may in fact be the case that the destabilization found
is due to combustion rather than vaporization per se.

Owing to the necessary connection between vaporization and combustion of particles, the problem of residual
combustion presents certain di±culties of distinguishing what process is really responsible for attenuation or
driving of waves. The most extensive work is the problem has been done by Beckstead and his students (Brooks
and Beckstead, 1995; Raun and Beckstead, 1993; Beckstead, Richards and Brewster, 1984). Probably the most
compelling reason for investigating the manner was the discover of anomalous (and still not completely understood)
results obtained with a device called the `velocity-coupled T-burner'. In this con¯guration, large areas of propellant
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are mounted in the lateral boundary to emphasize the interactions between surface combustion and velocity
°uctuations parallel to the surface.

For reasons not discussed here, Beckstead concluded that residual combustion was possibly a reason that
unusually large values of the response function were found. The idea was based partly on the suspicion that
the tangential velocity disturbances can strip incompletely burned aluminum from the surface. Subsequently,
with both calculations and further experiments (Raun and Beckstead, 1993). Beckstead has strengthened his
case that the e®ects of unsteady residual combustion should not be dismissed out-of-hand. However, there is
presently no analysis accommodating the process in computations of combustion instabilities in solid rockets. It
is worth noting the conclusion by Brooks and Beckstead (1995) that the greatest e®ect of residual combustion (of
aluminum) on stability was indirect, due to its e®ect on the mean temperature pro¯le.
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3. EQUATIONS FOR UNSTEADY MOTIONS IN COMBUSTION CHAMBERS

The examples described in Section 1, and many others, establish a ¯rm basis for interpreting unsteady
motions in a combustor in terms of acoustic modes of the chamber. That view has been formalized during the
past ¯fty years and has led to the most widely used methods for analyzing combustor dynamics. In this section,
we present the foundations of a particularly successful version of methods based on expansion in normal modes
and spatial averaging. We assume familiarity with most of the required background in classical °uid dynamics and
acoustics. Section 5 covers the principles and chief results of classical acoustics required as part of the foundation
for understanding combustion instabilities. The discussions in this and the following sections are quite formal,
intended to serve as the basis for a general framework within which unsteady motions, especially combustion
instabilities, in all types of combustors may be treated. Analyses using ad hoc models will be covered when
particular systems are considered, as in Section 2.

3.1. Modes of Wave Motion in a Compressible Medium. In this section, the term `modes' refers
not to natural motions or resonances of a chamber but rather to a type or class of motions in compressible
°ows generally. The brief discussion here is intended to address the question: how is it possible that apparently
coherent nearly-classic acoustic waves exist in chambers containing highly turbulent non-uniform °ow? It's a
fundamentally important observation that such is the case. The explanation has been most thoroughly clari¯ed
by Chu and Kovasznay (1957), who elaborated and combined some results known for nearly a century. Their
conclusions most signi¯cant for present purposes may be summarized as follows:

(1) Any small amplitude (linear) disturbance may be synthesized of three modes of propagation:
entropy waves or `spots', small regions having temperatures slightly di®erent from the ambi-
ent temperature of the °ow; vortical or shear waves characterized by nonuniform vorticity;
and acoustic waves.

(2) In the linear approximation, if the °ow is uniform, the three types of waves propagate
independently, but may be coupled at boundaries (e.g. nozzles) or in combustion zones.

Entropy and vortical waves propagate with the mean °ow speed (`convected') but acoustic waves propagate
with their own speeds of sound. Moreover, in this linear limit, only acoustic waves carry disturbances of pres-
sure. All three types of waves are accompanied by velocity °uctuations. If the °ow is non-uniform or at ¯nite
amplitudes, the three modes become coupled. As a result, each of the waves then carries pressure, temperature
and velocity °uctuations. Extension of the fundamental theory has not been accomplished completely (see Chu
and Kovasznay). Some of the consequences of these types of modal coupling arise in the theory developed here,
but much remains to be investigated. In particular, interactions between turbulence and an acoustic ¯eld is an
important process represented by coupling of the basic linear modes of propagation.

3.2. Equations of Motion for a Reacting Flow. Combustion systems commonly contain condensed
phases: liquid fuel or oxidizer, and combustion products including soot and condensed metal oxides. Hence the
equations of motion must be written for two phases consisting of at least one species each. For investigating
the dynamics of combustors, it is entirely adequate to represent each phase as its mass average over all member
species. For a medium consisting of a multicomponent mixture of reacting gases and, for simplicity, a single
liquid phase, it is a straightforward matter to construct a system of equations representing a single °uid. The
procedure is summarized in Appendix A. As a result we can treat combustor dynamics under broad conditions
as unsteady motions of a °uid having the mass-averaged properties of the actual medium.7 The dimensional
governing equations are (A.9){(A.14)

7We now use Cv ; °; R; ¢ ¢ ¢ to stand for the mass-averaged properties represented by bold-face symbols in Appendix A.
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Conservation of Mass

@½

@t
+ u ¢ r½ = ¡½r ¢ u+ W (3.1)

Conservation of Momentum

½

·
@u

@t
+ u ¢ ru

¸
= ¡rp+FFF (3.2)

Conservation of Energy

½Cv

·
@T

@t
+ u ¢ rT

¸
= ¡pr ¢ u+ Q (3.3)

Equation for the Pressure

@p

@t
+ u ¢ rp = ¡°pr ¢ u+ P (3.4)

Equation for the Entropy

½

·
@s

@t
+ u ¢ rs

¸
=
1

T
S (3.5)

Equation of State

p = R½T (3.6)

All de¯nitions are given in Appendix A.

It is particularly important to realize that the source functions W , FFF, Q and P contain all relevant processes
in the systems to be analyzed here. They include, for example, the modeling and representations of the actions
of actuation mechanisms used for active control. Eventually, the most di±cult problems arising in this ¯eld are
associated with modeling the physical processes dominant in the problems addressed.

Both for theoretical and computational purposes it is best to express the equations in dimensionless variables
using the reference values:

L : reference length

½r; pr; Tr; ar : reference density, pressure, temperature and speed of sound

Cvr; Cpr; Rr : reference values of Cv; Cp; R

Then de¯ne the dimensionless variables represented byM and the same symbols used for dimensional variables:

M =
u

ar
;

½

½r
! ½;

p

½ra2r
! p;

T

Tr
! T ;

Cv
Cvr

! Cv; etc.;
s

Cvr
! s

The dimensionless source functions are

L

½rar
W ! W ;

L

½ra2r
FFF ! FFF;

L

½ra3r
Q! Q;

L

½rar
P! P;

S

½rarCvr
! S
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Substitution of these de¯nitions in equations (3.1){(3.6) leads to the set of dimensionless equations for the
single °uid model:

Mass :
D½

Dt
= ¡½r ¢M+ W (3.7)

Momentum : ½
DM

Dt
= ¡rp+FFF (3.8)

Energy : ½Cv
DT

Dt
= ¡pr ¢M+ Q (3.9)

Pressure :
Dp

Dt
= ¡°pr ¢M+ P (3.10)

Entropy : ½
Ds

Dt
=
1

T
S (3.11)

State : p = ½RT (3.12)

and
D

Dt
=
@

@t
+M ¢ r (3.13)

We emphasize again that the source terms accommodate all relevant physical processes and can be interpreted
to include the in°uences of actuation used in active control.

3.3. Two-Parameter Expansion of the Equations of Motion. The general equations (3.7){(3.13) are
written in the form suggestive of problems that are dominated by °uid mechanical processes, a tactic dictated
by the observations described earlier. This point of view is the basis for the approach taken here to construct a
general framework within which both practical and theoretical results can be obtained by following systematic
procedures.

We are not concerned at this point with simulations or other methods relying essentially on some sort of
numerical anaylsis and large scale computations. The nature of the problems we face suggests perturbation
methods. If the source terms W , : : : were absent from (3.7){(3.11), the homogeneous equations then represent
nonlinear inviscid motions in a compressible °uid: Nonlinear acoustics in a medium without losses. One useful
method for investigating such problems is based on expansion of the equations in a small parameter, ", measuring
the amplitude of the motion. Speci¯cally, " can be taken equal to M 0

r, a Mach number characteristic of the
°uctuating °ow, " :=M 0

r.

The problems we are concerned with here are de¯ned essentially by the non-zero functions W , : : : . Because
observed behavior seems to be dominated by features recognizable as `acoustical', those sources which excite and
sustain the actual motions must in some sense be small. They should therefore be characterized by at least one
additional small parameter. It has become customary to select only one such parameter, ¹ := ¹Mr, a Mach number
¹Mr characterizing the mean °ow, for the following reasons.

8

Any operating combustion chamber contains an average steady °ow produced by combustion of the fuel and
oxidizer to generate products. The intensity of the °ow, partly measurable by the Mach number, is therefore
related to the intensity of combustion and both processes can in some sense be characterized by the same quantity,
namely the Mach number of the average °ow. Thus many of the processes represented in the source functions
may be characterized by ¹, in the sense that their in°uences become vanishingly small as ¹! 0 and are absent
when ¹ = 0.

8We use the symbols " and ¹ rather than M 0
r and

¹Mr to simplify writing.
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It is important to understand that the two small parameters " and ¹ have di®erent physical origins. Conse-
quently, they also participate di®erently in the formal perturbation procedures. Familiar nonlinear gas dynamical
behavior is, in the present context, governed by the parameter "; steepening of compressive waves is a notable
example. In the expansion procedure worked out here, the term `nonlinear behavior' refers to the consequences
of terms higher order in ".

On the other hand, the parameter ¹ characterizes perturbations of the gasdynamics due in the ¯rst instance
to combustion processes and the mean °ow. Terms of higher order in ¹, but linear in ", represent linear processes
in this scheme. Failure to recognize this basic distinction between " and ¹ can lead to incorrect applications
of formal procedures such as the method of time-averaging. Instances of this point will arise as the analysis is
developed.

3.3.1. Expansion in Mean and Fluctuating Values. There is no unique procedure for carrying out a two-
parameter expansion. We begin here by writing all dependent variables as sums of mean ¹( ) and °uctuating ( )0

parts without regard to ordering

p = ¹p+ p0; M = ¹M+M0; : : : ; W = ¹W = W 0; FFF = ¹F¹F¹F +FFF0; : : : (3.14)

We take the °uctuations of the primary °ow variables (p0, M0, ½0, T 0, s0) to be all of the same order in the
amplitude " of the unsteady motion. Generally, the source terms are complicated functions of the °ow variables
and therefore their °uctuations will contain terms of many orders in ". For example, suppose W = kp3. Then
setting p = ¹p+ p0 and expanding, we have

W = k(¹p+ p0)3 = k
h
¹p3 + 3¹p2p0 + 3¹pp

02 + p
03
i

Hence we de¯ne orders of the °uctuations of the source W and write

W = ¹W + W 0
1 + W

0
2 + W

0
3 + W

0
4 + : : :

where the subscript denotes the order with respect to the amplitude: Here, for the example W = kp3, W 0
2 =

(2k¹p)p
02. All source functions are written symbolically in the general form shown for !, but modeling is required

to give explicit formulas.

Most combustors contain °ows of relatively low Mach number, say ¹M . 0:3 or so. Thus we can assume that
for a broad range of circumstances, processes depending on the square of ¹M, i.e. of order ¹2, probably have small
in°uences on the unsteady motions. We therefore neglect all terms of order ¹2 and higher in the equations. As a
practical matter, the equations are greatly simpli¯ed with this assumption.

After substituting all variables split into sums of mean and °uctuating values, and collection of terms by
orders, we can rewrite (3.7){(3.13) as9

·
D¹½

Dt
+ ¹½r ¢ ¹M¡ ¹W

¸
+

·
@½0

@t
+ ¹½r ¢M0

¸
+
£
¹M ¢ r½0 + ½0r ¢ ¹M+M0 ¢ r¹½+r ¢ (½0M0)

¤¡ W 0 = 0 (3.15)

·
¹½
D ¹M

Dt
+r¹p¡ ¹FFF

¸
+

·
¹½
@ ¹M

@t
+rp0

¸
+

·
¹½
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢+ ¹½ ¹D ¹M

Dt

¸
+

·
½0
@M0

@t
+ ¹½M0 ¢ rM0 + ½0

¡
¹M ¢ rM0 +M0 ¢ r ¹M¢¸+ [½0M0 ¢ rM0]¡F0F0F0 = 0

(3.16)

9We do not include here terms O( ¹MrM
02
r ), i.e. ¯rst order in the mean °ow and second order in °uctuations.
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·
¹½Cv

D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+ Cv

·
¹½
@T 0

@t
+ ¹pr ¢M0

¸
+

·
¹½Cv

¡
¹M ¢ rT 0 +M0 ¢ r ¹T ¢+ Cv½0 ¹D ¹T

Dt
+ p0r ¢ ¹M

¸
+

·
Cv ¹½

@T 0

@t
+ Cv½

0 ¡ ¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0M0 ¢ rT 0 + p0r ¢M0
¸
+ [Cv ¹½M

0 ¢ rT 0]¡ Q0 = 0
(3.17)

·
@¹p

@t
+ ¹M ¢ r¹p+ °¹pr ¢ ¹M¡ ¹P

¸
+

·
@p0

@t
+ °¹pr ¢M0

¸
+
£
¹M ¢ rp0 +M0 ¢ r¹p+ °p0r ¢ ¹M¤

+ [M0 ¢ rp0 + °p0r ¢M0]¡ P0 = 0
(3.18)

·
¹½ ¹T
¹D¹s

Dt
¡ ¹Ş +

·
¹½ ¹T
@s0

@t

¸
+

·
¹½ ¹M ¢ rs0 + ½0 ¹T

¹D¹s

Dt
+ ¹½ ¹TM0 ¢ r¹s+ ¹½T 0 ¹M ¢ r¹s

¸
+

·
½0 ¹T

¹Ds0

Dt
+ ½0T 0

¹D¹s

Dt
+ ½0 ¹TM0 ¢ r¹s+ ¹½T 0M0 ¢ r¹s+ ¹½T 0 @s

0

@t

¸
+
£¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 ¡M0 ¢ r¹s+ ¹M ¢ rs0¢¤

+ [½0T 0M0 ¢ rs0]¡S0 = 0

(3.19)

£
¹p¡R¹½ ¹T ¤+ £p0 ¡R ¡¹½T 0 + ½0 ¹T¢¤+ [¡R½0T 0] = 0 (3.20)

where the convective derivative following the mean °ow is

¹D

Dt
=
@

@t
+ ¹M ¢ r (3.21)

As a convenience in writing, it is useful to introduce some symbols de¯ning groups of ordered terms. The set
of equations (3.15){(3.21) then become:

· ¹D¹½
Dt

+ ¹½r ¢ ¹M¡ ¹W

¸
+

µ
@½0

@t
+ ¹½r ¢M 0

¶
+ f[½]g1 + f½g2 ¡ W 0 = 0 (3.22)

·
¹½
¹D ¹M

Dt
+r¹p¡ ¹F¹F¹F

¸
+

µ
¹½
@M0

@t
+rp0

¶
+ f[M]g1 + fMg2 + fMg3 ¡F0F0F0 = 0 (3.23)

·
¹½Cv

¹D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+

µ
¹½Cv

@T 0

@t
+ ¹pr ¢M 0

¶
+ f[T ]g1 + fTg2 + fTg3 ¡ Q0 = 0 (3.24)

· ¹D¹p
Dt

+ °¹pr ¢ ¹M¡ ¹P
¸
+

µ
¹½Cv

@P 0

@t
+ ¹pr ¢M 0

¶
+ f[p]g1 + fpg2 ¡ P0 = 0 (3.25)

·
¹½
¹D¹s

Dt
¡ ¹Ş +

µ
¹½ ¹T
@s0

@t

¶
+ f[s]g1 + fsg2 + fsg3 + fsg4 = 0 (3.26)

£
¹p¡R¹½ ¹T ¤+ fp¡R½Tg1 + fR½0Tg2 = 0 (3.27)

The de¯nitions of the bracketted terms f½g1, ¢ ¢ ¢ etc. are given in Appendix A, Section A.2; the subscript
f gn on the brackets identi¯es the orders of terms with respect to the °uctuations of °ow variables, and the
square brackets [ ] indicate that the terms are ¯rst order in the average Mach number. We have shown here
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in each equation terms of the highest order °uctuations generated by the purely °uid mechanical contributions
plus sources that must be expanded to orders appropriate to particular applications. Only the entropy equation
produces terms of fourth order.

Time derivatives of quantities identi¯ed with the mean °ow are retained to accommodate variations on a time
scale long relative to the scale of the °uctuations. This generality is not normally required for treating combustion
instabilities and unless otherwise stated, we will assume that all averaged quantities are independent of time.

3.3.2. Equations for the Mean Flow. At this point we have two choices. Commonly the assumption is made
that the equations for the mean °ow `satisfy their own equations'. That implies that the square brackets [ ] in
(3.22){(3.27) vanish identically. With the time derivatives absent, the equations for the mean °ow are:

¹M ¢ r¹½+ ¹½r ¢ ¹M = ¹W (3.28)

¹½ ¹M ¢ r ¹M+r¹p = FFF (3.29)

¹½Cv ¹M ¢ r ¹T + ¹pr ¢ ¹M = ¹Q (3.30)

¹M ¢ r¹p+ °¹pr ¢ ¹M = ¹P (3.31)

¹½ ¹T ¹M ¢ r¹s = ¹S (3.32)

¹p = R¹½ ¹T (3.33)

This set of equations certainly applies when the average °ow is strictly independent of time and there are no
°uctuations. The time derivatives cannot be ignored when the °ow variables change so slowly that the motion
may be considered as `quasi-steady' and °uctuations are still ignorable.

It is possible that when °uctuations are present, interactions among the °ow variables cause transfer of
mass, momentum and energy between the °uctuating and mean °ows, generating time variations of the averaged
variables. Then the appropriate equations are obtained by time-averaging (3.22){(3.27) to give10

¹D¹½

Dt
+ ¹½r ¢ ¹M = ¹W ¡ f[½]g1 ¡ f½g2 + W

0
(3.34)

¹½
¹D ¹M

Dt
+r¹p = ¹F¹F¹F ¡ f[M]g1 ¡ fMg2 ¡ fMg3 +F0F0F0 (3.35)

¹½Cv
¹D ¹T

Dt
+ ¹pr ¢ ¹M = ¹Q¡ f[T ]g1 ¡ fTg2 ¡ fTg3 + ¹Q0 (3.36)

¹D¹p

Dt
+ °¹pr ¢ ¹M = ¹P¡ fpg1 ¡ fpg2 + fpg3 (3.37)

¹½ ¹T
¹D¹s

Dt
= ¹S¡ fsg1 ¡ fsg2 ¡ fsg3 ¡ fsg4 (3.38)

¹p = R¹½ ¹T ¡ f½Tg1 ¡ f½Tg2 (3.39)

10Note that the °uctuations of the source terms, W 0 ¢ ¢ ¢ etc., actually contain squares and higher order products of the dependent
variables; hence their time averages will generally be non-zero.
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If the mean °ow is strictly independent of time, then time averages of all ¯rst-order brackets, f g1, must
vanish. For generality we allow them to be nonzero. There seem to be no analyses in which their variations have
been taken into account.

The two sets of equations governing the mean °ow in the presence of unsteady motion de¯ne two distinct
formulations of the general problem. In the ¯rst, equations (3.28){(3.33), computation of the mean °ow is
uncoupled from that of the unsteady °ow. Hence formally we are concerned with the stability and time evolution
of disturbances superposed on a given, presumed known, mean °ow una®ected by the unsteady motions. That is
the setting for all investigations of combustion instabilities founded on the splitting of small °ow variables into
sums of mean and °uctuating values. This approach excludes, for example, possible in°uences of oscillations on
the mean pressure in the chamber (often called `DC shift'), not an unusual occurrence in solid propellant rockets.
When they occur, DC shifts of this sort are almost always unacceptable in operational motors; they may or may
not be signi¯cantly and directly a®ected by the °uctuations.

In contrast, the set (3.34){(3.39) is strongly coupled to the °uctuating ¯eld. The situation is formally that
producing the problem of `closure' in the theory of turbulent °ows (see, for example, Tennekes and Lumley, 1972).
We will not explore the matter here, but we note only that the process of time averaging terms on the right-hand
sides of the equations introduces functions of the °uctuations that are additional unknowns. Formal analysis then
requires that those functions be modeled; perhaps the most familiar example in the theory of turbulence is the
introduction of a `mixing length' as part of the representation of stresses associated with turbulent motions.

Numerical simulations of combustion instabilities do not exhibit the problem of closure if the complete
equations are used, avoiding the consequences of the assumption (3.14). Thus, for example, the results obtained
by Baum and Levine (1982, 1988) do show time-dependence of the average pressure in examples of instabilities
in solid rockets. Another possible cause of that behavior, probably more important in many cases, is nonlinear
dependence of the burning rate on the pressure or velocity near the surface of a solid propellant rocket. Within
the structure given here, that behavior may arise from time-averaged functions of p0, M0, : : : contained in the
boundary conditions, or from some nonlinear dependence such as jM0j.

We use in these lectures the formulation assuming complete knowledge of the mean °ow, given either by
suitable modeling or by solution to the governing equations (3.28){(3.33) or (3.34){(3.39).

3.3.3. Systems of Equations for the Fluctuations. The general equations of motion (3.22){(3.27) and those for
the mean °ow written in Section 3.3.1 contain a restriction only on the magnitude of the average Mach number.
Such generality blocks progress with the analysis and for many applications is unnecessary. The set of equations
(3.22){(3.27) must be simpli¯ed to forms that can be solved to give useful results. Many possibilities exist. We
follow here a course that previous experience has shown to be particularly fruitful for investigations of combustor
dynamics. The choices of approximations and tactics are usually motivated by eventual applications and the type
of analysis used.

First we assume that the mean °ow is determined by its own system of equations; that is, we avoid the problem
of closure and use the ¯rst formulation, equations (3.28){(3.33), discussed in Section 3.3.1. Consequently, the
mean °ow is taken to be independent of time and the combinations in square brackets [ ], equations (3.22){(3.27),
vanish identically. Using the de¯nitions of the remaining brackets,

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 ¡ f½g2 + W 0 (3.40)

¹½
@M0

@t
+rp0 = ¡f[M]g1 ¡ fMg2 ¡ fMg3 +F0F0F0 (3.41)

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 ¡ fTg2 ¡ fTg3 + Q0 (3.42)
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@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 ¡ fpg2 + P0 (3.43)

¹½ ¹T
@s0

@t
= ¡f[s]g1 ¡ fsg2 ¡ fsg3 ¡ fsg4 +S0 (3.44)

The various brackets are de¯ned in Section A.2 of Appendix A. They are formed to contain terms ordered with
respect to both the mean Mach number and the amplitude of the °uctuations:

[ ] : 1st order in ¹M; 1st order inM0; O(")

f g2 : 0th order in ¹M; 2nd order in M0; O("2)

f g3 : 0th order in ¹M; 3rd order in M0; O("3)

f g4 : 0th order in ¹M; 4th order in M0; O("4)

(3.45)

No terms have been dropped in passage from the set (3.22{(3.27) to the set (3.40){(3.44), but °uctuations of the
sources W 0; ¢ ¢ ¢ ;S0 are not now classi¯ed into the various types de¯ned by the brackets (3.45).

We have put the equations in the forms (3.40){(3.44) to emphasize the point of view that we are considering
classes of problems closely related to motions in classical acoustics. If the right-hand sides are ignored, (3.40){
(3.44) become the equations for linear acoustics of a uniform non-reacting medium at rest. The perturbations of
that limiting class arise from three types of processes:

(i) interactions of the linear acoustic ¯eld with the mean °ow, represented by the terms contained
in the square brackets, f[ ]g;

(ii) nonlinear interactions between the °uctuations, represented by the curly brackets conve-
niently referred to as: f g2, second order acoustics; f g3, third order acoustics; and f g4,
fourth order acoustics;

(iii) sources associated with combustion processes, represented by the source terms W 0;FFF0;Q0;P0

and S0.

By selectively retaining one or more of these types of perturbations we de¯ne a hierarchy of problems of
unsteady motions in combustors. We label these classes of problems O, I, II, III, IV according to the orders of
terms retained in the right-hand side when the left-hand side comprise only the terms of order " :=M0

r de¯ning
clssical linear acoustics.

O. Classical Acoustics, (¹ = 0; "! 0)

Perturbations to ¯rst order in " are retained in (3.40){(3.44):

@½0

@t
+ ¹½r ¢M0 = W 0

¹½
@M0

@t
+rp0 = FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = Q0

@p0

@t
+ °¹pr ¢M0 = P0

¹½ ¹T
@s0

@t
= S0

(3.46) a-e
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I. Linear Stability, O("; ¹")

Retain interactions linear in the average Mach number and in the °uctuations:

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 + W 0

¹½
@M0

@t
+rp0 = ¡f[M]g1 +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 + Q0

@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 + P0

¹½ ¹T
@s0

@t
= ¡f[s]g1 +S0

(3.47) a-e

II. Second Order Acoustics, O("; ¹"; "2)

Retain the linear interactions and the nonlinear second order acoustics:

@½0

@t
+ ¹½r ¢M0 = ¡[f[½]g1 + f½g2] + W 0

¹½
@M0

@t
+rp0 = ¡[f[M]g1 + fMg2] +FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡[f[T ]g1 + fTg2] + Q0

@p0

@t
+ °¹pr ¢M0 = ¡[f[p]g1 + fpg2] + P0

¹½ ¹T
@s0

@t
= ¡[f[s]g1 + fsg2] +S0

(3.48) a-e

III. Third Order Acoustics, O("; ¹"; "2; "3)

Retain the linear interactions and the nonlinear acoustics up to third order:

@½0

@t
+ ¹½r ¢M0 = ¡[f[½]g1 + f½g2] + W 0

¹½
@M0

@t
+rp0 = ¡[f[M]g1 + fMg2 + fMg3] +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡[f[T ]g1 + fTg2 + fTg3] + Q0

@p0

@t
+ °¹pr ¢M0 = ¡[f[p]g1 + fpg2] + P0

¹½ ¹T
@s0

@t
= ¡[f[s]g1 + fsg2 + fsg3] +S0

(3.49) a-e

Four other classes of problems possible to de¯ne in this context will not be considered here since no results
have been reported: second order acoustics with mean °ow interactions; fourth order acoustics; and third and
fourth order acoustics with nonlinear acoustics/mean °ow interactions.

In problems I{III, the source terms W 0; ¢ ¢ ¢ must be expanded to order consistent with the orders of the
°uid-mechanical perturbations retained.

3.4. Nonlinear Wave Equations for the Pressure Field. Practically all of the subsequent material
in this book will be either directly concerned with pressure waves, or with interpretations of behavior related
pressure waves. The presence of unsteady vorticity causes important revisions of such a restricted point of view,
as we have already mentioned in Section 3.1, but the basic ideas remain in any event. Hence the wave equation



Combustion Instabilities in Solid Propellant Rocket Motors 

 

11 - 68 RTO-EN-023 

for pressure °uctuations occupies a meaningful position in all ¯ve classes of problems de¯ned in the preceding
section. Its formation follows the same procedure used in classical acoustics.

De¯ne MMM and R to contain all possible terms arising in the sets of equations constructed for the problems
O{III:

¹½
@M0

@t
+rp0 = ¡MMM +F0F0F0 (3.50)

@p0

@t
+ °¹pr ¢M0 = ¡R + P0 (3.51)

where

MMM = f[M]g1 + fMg2 ++fMg3 (3.52)

R = f[p]g1 + fpg2 (3.53)

Di®erentiate 3.50 with respect to time and substitute 3.50 for @M0=@t:

@2p0

@t2
¡ °¹pr ¢

·
¡1
¹½
rp0 ¡ 1

¹½

¡
MMM ¡F0F0F0¢¸ = ¡@R

@t
+
@P0

@t

Rearrange the equation to ¯nd

r2p0 ¡ 1

¹a2
@2p0

@t2
= h (3.54)

with

h = ¡¹½r ¢
·
1

¹½

¡
MMM ¡F0F0F0¢¸+ 1

¹a2
@

@t
(R ¡ P0) + 1

¹½
r¹½ ¢ rp0 (3.55)

The boundary condition for the pressure ¯eld is found by taking the scalar product of the outward normal,
at the chamber boundary, with:

n̂ ¢ rp0 = ¡f (3.56)

f = ¡¹½@M
0

@t
¢ n̂+ (MMM ¡FFF0) ¢ n̂ (3.57)

ReplacingMMM and R by their de¯nitions (3.52), we have the formulation based on the inhomogeneous nonlinear
wave equation and its boundary condition:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(3.57) a,b

with

h = ¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
¡
½
¹½r ¢ 1

¹½
fMg2 ¡ 1

¹a2
@fpg2
@t

¾
¡ ¹½r ¢ 1

¹½
fMg3

+
1

¹½
r¹½ ¢ rp0 + ¹½r ¢ 1

¹½
FFF0 ¡ 1

¹a2
@P0

@t

(3.58)

f = ¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2 + fMg3]¡F0F0F0 ¢ n̂ (3.59)

With this formulation, the wave equations and boundary conditions for the classes of problems de¯ned in
Section 3.3 are distinguished by the following functions h and f :
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O. Classical Acoustics

hO = ¹½r ¢ 1
¹½
FFF0 ¡ 1

¹a2
@P0

@t

fO = ¹½
@M0

@t
¢ n̂¡FFF0 ¢ n̂

(3.60) a,b

I. Linear Stability

hI = ¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
+
1

¹½
r¹½ ¢ rp0 + ¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

fI = ¹½
@M0

@t
¢ n̂+ n̂ ¢ f[M]g1 ¡F0F0F0 ¢ n̂

(3.61) a,b

Allowing F0F0F0 and P0 to be non-zero gives the opportunity for representing sources of mass, momentum,
and energy both within the volume and at the boundary. The ¯rst term in f0 accounts for motion of the
boundary.

II. Second Order Acoustics

hII =¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
¡
½
¹½r ¢ 1

¹½
fMg2 ¡ 1

¹a2
@fpg
@t

¾
+
1

¹½
r½0 ¢ rp0 + ¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

fII =¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2]¡F0F0F0 ¢ n̂

(3.62) a,b

III. Third Order Acoustics

hIII =¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
¡
½
¹½r ¢ 1

¹½
fMg2 ¡ 1

¹a2
@fpg2
@t

¾
¡ ¹½r ¢ 1

¹½
fMg3 + 1

¹½
r¹½ ¢ rp0 + ¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

fIII =¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2 + fMg3]¡F0F0F0 ¢ n̂

(3.63) a,b

With these de¯nitions of the functions h and f , the de¯nitions of the four classes of problems considered here
are complete, forming the basis for the analysis worked out in the remainder of these lectures. Only problems
within classical acoustics can be solved easily. All others require approximations, both in modeling physical
processes and in the method of solution. Modeling will be discussed in the contexts of speci¯c applications; a few
remarks help clarify the approximate method of solution described in the following section.

Remarks:

i) The classes of problems I{III de¯ned here are described by inhomogeneous equations that
even for linear stability cannot be generally solved in closed form. The chief obstacles to
solution arise because the functions h and f contain not only the unknown pressure but also
the velocity and temperature. For given functions F0F0F0 and P0, numerical solutions could be
obtained for a speci¯ed combustor and mean °ow ¯eld. The results would apply only to
the special case considered. To obtain some understanding of general behavior it would be
necessary to consider many special cases, a tedious and expensive procedure.
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ii) Therefore, we choose to work out an approximate method of solution applicable to all classes
of problems. Numerical solutions, or `simulations' then serve the important purpose of as-
sessing the validity and accuracy of the approximate results.

iii) The approximate method of solution is based ¯rst on spatial averaging, followed by an iter-
ation procedure involving extension of the expansion in two small parameters de¯ned in this
section. This method has been most widely used and con¯rmed in applications to combustion
instabilities in solid propellant rockets, but it can be applied to problems arising in any type
of combustor.

iv) Instabilities in solid rockets have been particularly helpful in developing the general theory
for at least three reasons: 1) the mean °ow ¯eld, nonuniform and generated by mass addition
at the boundary, requires careful attention to processes associated with interactions between
the mean °ow and unsteady motions; 2) more experimental results for transient behavior
have been obtained for solid rockets than for any other combustion system; and 3) although
still far from being satisfactorily understood, the dynamics of burning solid propellants is
better known than for any other combustion system.

v) The °uctuations of the source terms, W 0, FFF0, : : : S0 will be made explicit as required in
particular applications.
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4. MODAL EXPANSION AND SPATIAL AVERAGING;
AN ITERATIVE METHOD OF SOLUTION

From the point of view represented in Figure 1.1, we are concerned in this section with representing the
combustor dynamics. The procedure, often called `modeling' is based on the equations of motion constructed
in the preceding section and hence in principle will contain all relevant physical processes11. For the purposes
here, all modeling of combustor dynamics and of combustion dynamics|the mechanisms and feedback in Figure
1.1|must be done in the context developed in Section 1. Thus we always have in mind the idea of wave motions
somehow generated and sustained by interactions between the motions themselves and combustion processes, the
latter also including certain aspects of the mean °ow within the combustor.

The simplest model of the combustion dynamics is a single wave, a classical acoustic resonance as in an organ
pipe, but decaying or growing due to the other processes in the chamber. In practice, the combustion processes
and nonlinear gasdynamical e®ects inevitably lead to the presence of more than one acoustic mode. We need a
relatively simple yet accurate means of treating those phenomena for problems of the sort arising in the laboratory
and in practice. Modeling in this case begins with construction of a suitable method for solving the nonlinear
wave equations derived in Section 3.4. In this context we may regard the analysis of the Rijke tube covered in
Section 2 as a basic example of the procedure stripped of the formalism covered in this section.

The chief purpose of the analysis constructed here is, to devise methods capable of producing results useful
for prediction and interpretation of unsteady motions in full-scale combustion chambers as well as for laboratory
devices. That intention places serious demands on the methods used for at least two reasons:

1. processes that must be modeled are usually complicated and their theoretical representations
are necessarily approximate to extents which themselves are di±cult to assess; and

2. almost all input data required for quantitative evaluation of theoretical results are charac-
terized by large uncertainties.

In this situation it seems that for practical and, as it will turn out, for theoretical purposes as well, the
most useful methods will be based on some sort of spatial averaging. Direct solution of the partial di®erential
equations, even for linear problems, is practically a hopeless task except for very special cases for simple geometries.
Direct numerical simulations (DNS) or numerical solutions to the partial di®erential equations are not yet a real
alternative for practical purposes at this time, and are usually less attractive for obtaining basic understanding.
However, as we will see later, numerical solutions o®er the only means for assessing the validity of approximate
solutions and always can treat more complicated (realistic?) problems than we can reasonably handle with the
analytical methods discussed here. In any event, one should view theory and analysis on the one hand, and
numerical simulations on the other, as complementary activities.

The material on analysis and theory of combustion instabilities treated in these two lectures is based on
a method of spatial averaging. The essential idea is of course not new, the method being nearly identical with
similar methods used in other branches of continuum mechanics. There are a few special characteristics associated
with applications to combustor that will appear in the course of the following discussion.

4.1. Application of a Green's Function for Steady Waves. The method used later to analyze nonlinear
behavior has its origins in an early analysis of linear combustion instabilities in liquid rocket engines (Culick, 1961,
1963). That work was based on solution to problems of steady waves by introducing a Green's function. It is an
e®ective strategy for this application because departures from a known soluble problem are small, due either to
perturbations within the volume or at the boundary, all of order ¹ in the context developed in Section 3.

11That seems to be what some people (notably electrical engineers it seems) mean by the term `physics-based modeling.' What
would otherwise be the basis for acceptable modeling of a physical system has not been explained.
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The problem to be solved is de¯ned by equation (3.54) and its boundary conditions (3.56) derived in Section
3.4,

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(4.1) a,b

with h and f given by (3.61) a,b for linear stability. Because h and f are linear, various methods are available
to build general solutions by applying the principle of superposition to elementary solutions representing steady
waves. Hence we assume that the °uctuating pressure ¯eld is a steady wave system within the given chamber,
having unknown spatial structure and varying harmonically in time:

p0 = p̂ei¹akt (4.2)

where k is the complex wavenumber, also initially unknown,

k =
1

¹a
(! ¡ i®) (4.3)

As de¯ned here, ® positive means that the wave has growing amplitude, p0 » e®t. Of course the wave is not
strictly stationary, a condition existing only if ® = 0, certainly true when h = f = 0, as in classical acoustics.

Even when h; f are non-zero, it is still possible that ® = 0, now de¯ning a state of neutral stability. In general
one must expect ®6= 0; it is a basic assumption in all of the analysis covered in this book that ® is small compared
with !, so the waves are slowly growing or decaying|they are `almost' stationary, and their spatial structure
does not change much in time. However, the results obtained are quite robust and seem often to be usable even
when ®=! is not small.

The problem here is to determine the spatial distribution p̂ and the complex wavenumber k. For steady waves
we can write

h = ·ĥei¹akt ; f = ·f̂ei¹akt

where again · is a small parameter12 characterizing the smallness of h and f . Substitution in (4.1) a,b and
dropping the common exponential time factor gives

r2p̂+ k2p̂ = ·ĥ
n̂ ¢ rp̂ = ¡·f̂

(4.4) a,b

This is of course a well-known classical problem thoroughly discussed in many books. Many methods of solution
are available for the linear problem. We use here a procedure based on introducing a Green's function discussed,
for example, by Morse and Feshbach (1952, Chapter 10). This is an attractive method for several reasons,
including:

1. Conversion from a di®erential equation, and the iterative method of solution this suggests, is
an e®ective means for minimizing the consequences of the uncertainties inherent in problems
of combustor dynamics;

2. Explicit results can be obtained for real and imaginary parts of the complex wavenumber in
forms that are easily interpreted and remarkably convenient both for theoretical work and
for applications;

3. The method has motivated a straightforward extension to nonlinear problems, with consid-
erable success.

De¯ne a Green's function satisfying the homogeneous boundary and the wave equation homogeneous except
at the single point where a source is located having zero spatial extent and in¯nite strength such that is integral
over space is ¯nite. Thus the source is represented by a delta function ¡±(r ¡ r0) and G is determined as a
solution to the problem

r2G(rjr0) + k2G(rjr0) = ±(r¡ r0)
n̂ ¢ rG(rjr0) = 0

(4.5) a,b

12Later, · will be identi¯ed with ¹ introduced in Section 3.3 but it is useful in this discussion to maintain a distinction.
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The notation rjr0 as the argument of G(rjr0) represents the interpretation of the Green's function as the wave
observed at point r due to a steady oscillatory point source at r0.

Multiply ((4.4) a,b)a by G(rjr0), ((4.5) a,b)a by p̂(r), subtract the results and integrate over volume (in the
present case the volume of the chamber) to ¯ndZZZ

V

£
G(rjr0)r2p̂(r) ¡ p̂(r)r2G (rjr0)] dV + k2

ZZZ
V

[G(rjr0)p̂(r)¡ p̂(r)G(rjr0)] dV

= ·

ZZZ
V

G(rjr0)ĥ(r)¡
ZZZ

p̂(r)±(r¡ r0)dV
(4.6)

Because G(rjr0) and p̂(r) are scalar functions the second integral on the right-hand side vanishes. The ¯rst
integral is rewritten using a form of Green's theorem, and the basic property of the delta function is applied to
the second integral on the right-hand side:ZZZ

V

F (r)±(r¡ r0)dV = F (r) (r1; r0 in V ) (4.7)

Hence (4.6) becomesZZ
S

° [G(rjr0)rp̂(r)¡ p(r)rG(rjr0)] ¢ n̂dS = ·
ZZZ
V

G(rjr0)ĥ(r)dV ¡ p̂(r0)

where n̂ is the outward normal at the surface of the volume V in question.

Now apply the boundary conditions (4.4) a,b and (4.5) a,b and the last equation can be written in the form

p(r̂0) = ·

8<:
ZZ
V

°G(rjr0)ĥ(r)dV +
ZZ
S

G(rsjr0)f̂(rs)dS
9=; (4.8)

Subscript ( )s means the point rs lies on the boundary surface (actually on the inside surface of the boundary).
Because the operator for scalar waves is self-adjoint (see Morse and Feshbach 1952, Chapter 10), the Green's
function possesses the property of symmetry

G(rjr0) = G(r0jr) (4.9)

This property has the appealing physical interpretation that the wave observed at r due to a point source at r0
has the same amplitude and relative phase as for the wave observed at r0 when a point source is located at r.
With (4.9) we can interchange r and r0 in (4.8) to ¯nd for the steady ¯eld at position r:

p̂(r) = ·

8<:
ZZZ
V

G(rjr0)ĥ(r0)dV0 +

ZZ
S

°G(rjr0s)f̂(r0s)dS
9=; (4.10)

Equation (4.10) is not an explicit solution for the pressure ¯eld due to the source functions ĥ and f̂ , but is

rather, an integral equation because ĥ and f̂ in general depend on the °uctuating pressure and velocity ¯elds
themselves. However, because the sources are assumed to be small perturbations of the classical ¯eld having no
sources, · is small and p̂ will not di®er greatly from a solution to the homogeneous problem de¯ned by h = f = 0.
The result (4.10) represents the solution to the inhomogeneous problem; the complete solution is (4.10) plus a
homogeneous solution. Advantage will be taken of the smallness of · to ¯nd an approximate explicit solution for
p̂ by an iterative procedure discussed in Section 4.1.1.

Whatever tactic one may choose to follow, the result (4.10) is of no practical value without having a represen-
tation of G(rjr0). The most convenient form of G(rjr0) for our purpose is expansion in eigenfunctions Ãn(r), here
the normal modes of the classical acoustics problem with no sources in the volume and homogeneous boundary
conditions: G(rjr0) is therefore expressed as a modal expansion,

G(rjr0) =
1X
n=0

AnÃn(r) (4.11)
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where the Ãn satisfy

r2Ãn + k2nÃn = 0
n̂ ¢ rÃn = 0

(4.12) a,b

and the Ãn are orthogonal functions, ZZZ
V

Ãm(r)Ãn(r)dV = E
2
n±mn (4.13)

Substitute (4.11) in ((4.5) a,b)a, multiply by Ãm(r) and integrate over the volume to ¯ndZZZ
V

Ãm

1X
n=0

Anr2ÃndV + k2
ZZZ
V

Ãm

1X
n=0

AnÃndV =

Z
Ãm(r)±(r¡ r0)dV

With (4.7), ((4.12) a,b) and (4.13), this equation produces the formula for An:

An =
Ãn(r0)

k2n ¡ k2
(4.14)

Thus the expansion (4.11) for G(rjr0) is

G(rjr0) =
1X
n=0

Ãn(r)Ãn(r0)

E2n(k
2 ¡ k2n)

(4.15)

the modal expansion of the Green's function. Substitution of (4.15) in (4.10) leads to the formal modal expansion
of the pressure ¯eld,

p̂(r) = ·
1X
n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.16)

Suppose that for · tending to zero, p̂(r) approaches the unperturbed mode shape ÃN ; let the corresponding
function p̂ be denoted p̂N , so

p̂ ¡!
·!0

p̂N = ÃN (4.17)

Now separate the Nth term from the sum in (4.16) and write

p̂(r) = ÃN (r)
·

E2N (k
2 ¡ k2N )

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=;
+·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=;
(4.18)

where the prime in the summation sign means that the term n = N is missing. This form is consistent with the
requirement (4.17) only if the factor multiplying ÃN (r) is unity, giving the formula for the perturbed wavenumber

k2 = k2N +
·

E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=; (4.19)

and (4.18) becomes

p̂(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.20)

Another more direct derivation of (4.19) very useful in later analysis, may be had by ¯rst multiplying ((4.4)
a,b)a by ÃN and integrating over the volume:ZZZ

V

ÃNr2p̂dV + k2
ZZZ
V

ÃN p̂dV = ·

ZZZ
V

ÃN ĥdV
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Application of Green's theorem to the ¯rst integral givesZZZ
V

p̂r2ÃNdV +
ZZ
S

° [Ãnrp̂¡ p̂rÃn] ¢ n̂dS + k2
ZZZ
V

Ãnp̂dV =

ZZZ
S

°ÃN ĥdV

after inserting r2ÃN = ¡k2NÃN and rÃN ¢ n̂ = 0, rearrangement gives

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS
9=; (4.21)

The integral of ÃN p̂ in the denominator of (4.21) can be evaluated by using (4.20) and is exactly E
2
n, providing

the series in (4.20) converges. Hence (4.21) is identical to (4.19). This simple calculation has shown that (4.19)
and (4.20) are consistent.

The preceding calculation contains several basic ideas behind much of the analysis used in these lectures. In
summary, the original problem described by the di®erential equation ((4.4) a,b)a and its boundary condition ((4.4)
a,b)b are converted to an integral equation, in this case (4.10), established by introducing a Green's function.
This is not an explicit solution because the functions h and f generally depend on the dependent variable p̂.
However, formulation as an integral equation forms a convenient basis for approximate solution by iteration.

4.1.1. Approximate Solution by Iteration. To apply an iterative procedure, it is necessary ¯rst to give the
Green's function G(rjr0) explicit form. The natural choice for problems of waves in a chamber is a series expansion
in the natural modes of the chamber, a modal expansion, (4.15). For the small parameter · tending to zero (i.e.
all perturbations of the classical acoustics problem are small), a straightforward argument produces the formula
(4.19) for the wavenumber and the integral equation (4.20) for p̂(r).

Equation (4.20) must be solved to give p̂ before the wavenumber can be computed with (4.19). We should
emphasize that for many practical purposes, it is really k that is required, because its imaginary part determines
the linear stability of the system (® = 0). The great advantage of this approach may be seen clearly with a simple

example. Suppose f̂ = 0 and ĥ = K(1 + p̂) in (4.4) a,b. Then (4.20) and (4.19) become

p̂(r) = ÃN (r) + ·K

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

ZZZ
V

Ãn(r0)(1 + p̂)dV0 (4.22)

k2 = k2N +
·K

E2N

ZZZ
V

ÃN(1 + p̂)dV0 (4.23)

Because · is assumed to be small, solution by successive approximation, i.e. an iterative procedure, is a logical way
to proceed. The initial (zeroth) approximation to the mode shape p̂ is (4.22) for · = 0, p̂(0) = ÃN . Substitution
in (4.23) gives k2 correct to ¯rst order in ·:

(k2)(1) = k2N +
·K

E2N

ZZZ
V

ÃN (1 + ÃN )dV0

= k2N + ·
KIN
E2N

(4.24)

where IN stands for the integral.

Calculation of p̂ to ¯rst order in · requires setting p̂ and k2 to their zeroth order values on the right-hand
side of (4.22), p̂(0) = ÃN , (k

2)(0) = k2N :

p̂(1)(r) = ÃN (r) + ·K

1X0

n=0

Ãn(r)

E2n(k
2
N ¡ k2n)

ZZZ
V

Ãn(r0)(1 + ÃN (r0))dV0

= ÃN + ·¾N
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Substitution of this formula for p̂ under the integral in (4.23) then gives the second approximation (k2)(2) to k2:

(k2)(2) = k2N +
·K

E2N

ZZZ
V

ÃN (1 + ÃN + ·¾N )dV0

= (k2)(1) + ·2
K

E2N

ZZZ
V

ÃN¾NdV0

(4.25)

A wonderful property of the procedure is already apparent: Calculation of the wavenumber to some order l
in the small parameter requires knowing the modal functions only to order l¡1. That is the basis for the current
standard practice of computing linear stability for solid propellant rockets (the Standard Stability Prediction
Program, Nickerson et al. 1983) using the unperturbed acoustic modes computed for the geometry in question.

The \perturbation-iteration" procedure just described is an old and widely used method to obtain solutions
to nonlinear as well as linear problems. Often much attention is paid to achieving more accurate solutions by
carrying the iterations to higher order in the small parameter. That is a legitimate process providing the equations
themselves are valid to the order sought. In Section 3 we emphasized the importance of the expansion procedure
largely for that reason. If the equations are valid, say, only to second order in the amplitude ("), there is no
need|in fact no justi¯cation|to try to ¯nd a solution to order "3 and higher. Similar remarks apply to the
expansion in the average Mach number (¹). The procedure is fully explained in Section 4.5 for the equations
derived in Section 3.4.

4.2. An Alternative Derivation of the First Order Formula. The results (4.19) and (4.21) for the
complex wavenumber and mode shape can be constructively obtained in a di®erent way. Both formulas provide
means for computing the di®erences k2 ¡ k2N and p̂¡ ÃN between the actual (perturbed) quantities and the un-
perturbed quantities. It is reasonable that those results should somehow follow from comparison of the perturbed
(· 6= 0) and unperturbed (· = 0) problems. The idea is to average the di®erence between the two problems
weighted respectively by the other's mode shape. That is, subtract p̂ times equation ((4.12) a,b)a from Ãn times
((4.4) a,b)a and integrate the result over the volume of the chamber:ZZZ

V

£
ÃNr2p̂¡ p̂r2ÃN

¤
dV +

ZZZ
V

(k2 ¡ k2N )Ãnp̂dV0 = ·
ZZZ
V

ÃN ĥdV

Now apply Green's theorem to the ¯rst integral, substitute the boundary conditions ((4.4) a,b)b and ((4.12) a,b)b
and rearrange the result to ¯nd (4.21):

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS
9=; (4.26)

If k2 is to be calculated to ¯rst order in ·, then p̂ must be replaced by its zero order approximation p̂ = ÃN .
Because the correction to k2N contains the multiplier ·, any contributions of order · multiplying · give terms of
order ·2. Hence to ¯rst order, (4.26) of course becomes (4.19).

This approach does not provide a recipe for computing the modal or basis functions to higher order. That does
not cause di±culty here because we have the procedure given in the preceding section. We will ¯nd later that the
simple derivation just given suggests a useful extension to time-dependent nonlinear problems. In that situation
there is no result corresponding to (4.20) for computing the mode shapes to higher order. That de¯ciency is a
serious obstacle to further progress, a subject of current research.

4.3. Approximate Solution for Unsteady Nonlinear Motions. The method covered in the preceding
two sections, based essentially in the use of Green's functions, was the ¯rst application of modal expansions and
spatial averaging to combustion instabilities (Culick 1961, 1963). In the early 1970's the procedure was extended
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to treat nonlinear problems, necessarily involving time-dependence (Culick 1971, 1975). We summarize that
approach here.13

We begin with the general problem (4.1) a,b and assume an approximation ~p0(r) to the pressure ¯eld as a
truncated expansion in a set of basis functions Ãm,

~p0(r; t) = ¹pr

MX
m=0

´m(t)Ãm(r) (4.27)

In this work we will always take the Ãm to be acoustic modes de¯ned by the geometry, the distribution of average
temperature and suitable boundary conditions.14 We would like the right-hand side of (4.27) to become more
nearly equal to the actual pressure ¯eld in the combustor as more terms are included in the series, so that ~p0 ´ p0
in the limit:

lim
M!1

~p(r; t) = lim
M!1

MX
m=0

´m(t)Ãm(r) (4.28)

Because the Ãm do not satisfy the correct boundary conditions, this pointwise property certainly cannot be
satis¯ed at the boundary. It is reasonable, however, to expect convergence in integral-squared sense; that is the
integral of the square of the di®erence between the exact solution and (4.27) satis¯es

lim
M!1

ZZZ "
p0(r; t)¡ ¹pr

MX
m=0

´m(t)Ãm(r)

#2
dV = 0 (4.29)

We will not prove this properly, but assume its truth.

Convergence in the sense asserted by (4.29) is a common idea arising, for example, in formal treatments
of Sturm-Liouville problems; see Hildebrand 1952 for a very readable discussion. The matter of convergence of
approximate solutions in the present context is more complicated because one must take into account the fact
that the governing equations and their solutions are expanded in the two small parameters ¹ and " introduced in
Section 3. We will also not discuss that problem.

The synthesis of the pressure ¯eld expressed by (4.27) does not restrict in any practical fashion the generality
of the method. For de¯nitions here we assume that the modal functions satisfy the homogeneous Neumann
condition n̂ ¢ rÃn = 0, but for some applications a di®erent boundary condition, perhaps over only part of the
boundary, may serve better. Hence we will assume here that the Ãn are eigensolutions to the problem (4.12) a,b.

We require that the approximation (4.27) to p0 satisfy equation (4.1) a,b. Multiply (4.12) a,b written for ÃN
by ~p0(r; t), subtract from (4.1) a,b written for ~p0 multiplied by ÃN ; and integrate the di®erence over the volume
of the chamber to giveZZZ

V

£
ÃNr2~p0 ¡ ~p0r2ÃN

¤
dV ¡

ZZZ
V

1

¹a2
@2~p0

@t2
dV ¡ k2N

ZZZ
V

~p0ÃNdV =
ZZZ
V

ÃNhdV

13An alternative form based on an form of Galerkin's method, extended to accommodate the sorts of problems arising in the
present context, was introduced ¯rst by Zinn and his students. That procedure and the present method give identical equations
before the expansion procedure is applied and further approximations are used. The applicability of that method seems to have been
blunted in some cases by use of a velocity potential, thereby requiring that the unsteady ¯eld be irrotational. It seems also that the

ordering procedure (in terms of the small parameters ¹Mr and ¹M 0
r) (i.e. ¹ and ") has not been followed consistently, causing confusion

in some derivations and conclusions. Those matters are discussed elsewhere. It seems likely that the extended form of Galerkin's
method could give the same (or nearly so) results as found by the method discussed here, but the early works were not pursued
further. There is no basis for comparison.

14The selection of boundary conditions is part of the art of applying this method. Examples covered later will clarify the point.
For the present, it is helpful to think of the Ãm as classical acoustic modes for a volume having rigid walls and the same shape as the
combustion chamber in question. The Ãm therefore do not satisfy exactly the boundary conditions actually existing in a combustor.
Hence the right-hand side of (4.27) is an approximation in two respects: the series is truncated to a ¯nite number of terms and it does
not satisfy the correct boundary conditions. However, the solution carried out to the next order does satisfy the boundary conditions
to ¯rst order. This important point is discussed in Chapter 10 of Morse and Feshbach (1952). The approximate nature of the modal
expansion will be clari¯ed as the analysis proceeds.
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Apply Green's theorem to the ¯rst integral, substitute the boundary conditions (4.1) a,b and (4.12) a,b and
rearrange the result to giveZZZ

V

1

¹a2
@2~p0

@t2
ÃNdV + k

2
N

ZZZ
V

~p0ÃNdV = ¡
8<:
ZZZ
V

hÃNdV +

ZZ
S

°fÃNdS
9=; (4.30)

Now substitute the modal expansion (4.27) in the right-hand side:

¹pr
¹a2r

MX
m=0

Ä́m(t)

ZZZ
V

³¹ar
¹a

´2
ÃmÃNdV ¡ k2n¹pr

MX
m=0

´m

ZZZ
V

ÃmÃNdV = E
2
N

¹pr
¹a2r
FN (4.31)

where

FN = ¡ ¹a2r
¹prE2N

8<:
ZZZ
V

hÃNdV +

ZZ
S

°fÃNdS
9=; (4.32)

and ¹ar is a constant reference speed of sound. The second sum reduces, due to the orthogonality of the Ãm, to
´nE

2
n. Under the ¯rst integrals, write

¢a = 1¡
³¹ar
¹a

´2
(4.33)

Then the ¯rst sum in (4.31) is

MX
m=0

Ä́m(t)

ZZZ
V

(1¡¢a)ÃmÃNdV = E2N Ä́N ¡
MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.34)

With these changes, equation (4.31) becomes

Ä́N + !
2
N´N = FN +

1

E2N

MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.35)

The sum on the right-hand side represents part of the e®ect of a non-uniform speed of sound in the chamber (if
¢a 6= 0). To simplify writing we will ignore this term until we consider special problems in later chapters. For
solid rockets it is a negligible contribution. If the combustor contains °ame sheets, the temperature is piecewise
uniform and this term also doesn't appear, but the presence of the discontinuities generates corresponding terms
arising from FN . Thus there are useful situations in which we deal with the system of equations:

Ä́N + !
2
N´N = FN (4.36)

This result, a set of coupled nonlinear equations with the forcing function FN given by (4.34), is the basis for
practically all of the analysis and theory discussed in the remainder of this book. A corresponding result is given
in Appendix B for a purely one-dimensional formulation. In anticipation of later discussions, several general
remarks are in order.

(i) The formulation expressed by (4.36) accommodates all relevant physical processes. In the
derivation of the conservation equations in Appendix A, only inconsequential approximations
were made, notably the neglect of multi-component di®usion and the representation of the
reacting multi-phase medium by a single-°uid model. However, only the basic gasdynamics
are known explicitly. All other processes must be modeled in suitable forms.

(ii) Despite the apparent generality of (4.36) attention must be paid to an assumption implied in
the application of Green's theorem in spatial averaging. That is, the functions involved must
possess certain properties of continuity within the volume of averaging. The condition is not
satis¯ed, for example, at a °ame sheet, where the velocity is discontinuous, an important
exception.

(iii) The selection of functions for the modal expansion (4.27) is not unique; possible alternatives
must always be considered. What works best depends on the nature of the boundary con-
ditions. The closer the boundary is to a rigid re°ecting surface, the more e®ective is the
choice n̂ ¢ rÃN = 0, meaning that the acoustic velocity vanishes on the boundary. Because a
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combustor must provide for in°ow of reactants and exhaust of products, it is simply not pos-
sible that the actual enclosure be everywhere rigid and perfectly re°ecting. For n̂ ¢ rÃN = 0
to be a good approximation, as it should be for the modal expansion to serve successfully
as a zeroth approximation to the pressure ¯eld, the boundary must be `nearly' re°ecting.
Choked inlets and outlets satisfy the condition if the Mach number at the chamber side is
small (that is, the °ow within the volume is consistent with the assumption ¹¿ 1). Also, the
dynamical response of burning solid propellants is normally such that requiring n̂ ¢ rÃN = 0
is a good choice. Hence, over a broad useful range of practical conditions, de¯ning the modal
expansion functions with (4.12) a,b is a reasonable choice. Exceptions are not rare, however,
and care must be exercised. For example, a Rijke tube (Section 2) will contain a heater, or
a thin combustion region within the duct. Continuous functions ÃN may not be good zeroth
approximations to the actual behavior discontinuous at the heating zone; moreover, in that
case n̂ ¢ rÃN = 0 at the ends is the proper choice for boundary conditions on the modal
functions. More generally, if the temperature ¯eld is highly non-uniform, then the zeroth
order expansion functions should take that feature into account.

(iv) An enormous advantage of the result (4.36) is its clear interpretation. A general unsteady
motion in a combustor is represented by the time-evolution of a system of coupled nonlinear
oscillators in one-to-one correspondence with the modes ÃN . Although the left-hand side
of (4.36) describes the motion of a linear oscillator, the forcing function FN will in general
contain terms in ´N representing linear and nonlinear damping, springiness and inertia.
Consequently, as we will see, it is easy to ¯nd familiar nonlinear di®erential equations as
special cases of (4.36). Such special results aid greatly interpretation of complicated observed
behavior in terms of simpler elementary motions. Thus it is important to understand the
connections between parameter de¯ning the oscillators, the characteristics of the modes, and
the de¯nitions provided in the process of spatial averaging.

(v) Di®erent problems are distinguished chie°y in two respects: Geometry of the combustor;
and the form of the forcing function FN . The forcing function contains the in°uences of
gasdynamics explicitly, but all other processes must be modeled, either with theory or based
on experimental results. The geometry and the boundary conditions determine the modal
expansion functions ÃN and the frequencies !N . For complicated geometries, as for many
large solid propellant rockets and for most gas turbine combustors, computation of the ÃN
and !N has been a time-consuming and expensive process. That situation is gradually
changing with the development of more capable software.

(vi) The relatively general context in which the oscillator equations have been derived does not
exclude simpler problems which can either be treated as special cases or constructed without
reference to the procedures worked out here. However, it is then often more di±cult to be
certain that all important processes are accounted for or properly ignored.

4.4. Application of Time-Averaging. To this point the expansion procedure based on two small pa-
rameters has been used only to derive the systems of equations describing successively more di±cult classes or
problems in Section 3.3.2. There are at least two additional reasons for introducing that procedure. Later we will
see how an iterative method based partly on the expansion reduces those systems of equations to more readily
soluble forms. In this section we apply time-averaging to convert the second-order equations (4.36) to ¯rst order
equations. First, two remarks:

(i) Use of time-averaging is motivated by the experimental observation that combustion instabil-
ities commonly show slowly varying amplitudes and phases of the modes contributing to the
motions. That behavior is a consequence of the relative weakness of the disturbing processes
and is therefore measured by the small parameter ¹ characteristic of the Mach number of
the mean °ow. It is essential to understand that it is not the amplitudes themselves (i.e. the
parameter ") that matters. Thus the application of time-averaging in the present context
is not intended to treat nonlinear behavior, but is based on the weak coupling between the
mean °ow and the unsteady motions.
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(ii) Two-time scaling is an alternative method to time-averaging. The results obtained are iden-
tical up to second order acoustics (Section 3.3.3(II) and 3.4), a conclusion not shown here
but consistent with similar previous works in other ¯elds.

According to the discussion in Section 3.3.2, we can characterize the functions h and f , and hence the forcing
function Fn, as sums of terms each of which is of order ¹ and of zeroth or ¯rst order in ". Thus for example, the
right-hand side of (3.62) a,b has the form

¡¹"
½
f[M]g1 + "

¹
fMg2

¾
The divergence of these terms eventually appears in h and Fn. Hence we are justi¯ed in taking Fn of order ¹; to
show this explicitly write (4.36) as

Ä́N + !
2
N´N = ¹GN (4.37)

In any event, for ¹ small, the ´N di®er but little from sinusoids so (without approximation) it is reasonable to
express ´N (t) in the equivalent forms

´N (t) = rN (t) sin (!N t+ ÁN (t)) = AN (t) sin!N t+BN (t) cos!N t (4.38)

and

AN (t) = rN cosÁN ; BN = rN sinÁN

rN =
q
A2N +B

2
N ; ÁN = tan

¡1
µ
AN
BN

¶
(4.39)

One way to proceed follows a physical argument based on examining the time evolution of the energy of the
oscillator having amplitude ´N (Culick 1976). The energy EN is the sum of kinetic and potential energies,

EN (t) =
1

2
_́2N +

1

2
!2N´

2
N (4.40)

The time-averaged values of the energy and power input to the oscillator, due to the action of the force ¹GN ,
are

hEN i = 1

¿

Z t+¿

t

ENdt
0 ; h¹GN _́N i = 1

¿

Z t+¿

t

¹GN _́Ndt
0 (4.41)

Conservation of energy requires that the time-averaged rate of change of energy equal the time-averaged rate of
work done by ¹GN on the oscillator:

d

dt
hEN i = ¹hGN _́N i (4.42)

From (4.38), the velocity is

_́N = !NrN cos (!N t+ ÁN ) +
h
_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN )

i
(4.43)

Following Krylov and Bogoliubov (1947) we apply the `strong' condition that the velocity is always given by the
formula for an oscillator is force-free-motion,

_́N = !NrN cos (!N t+ ÁN) (4.44)

Hence (4.43) is consistent with this requirement only if

_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN ) = 0 (4.45)

Now use the de¯nitions (4.36), (4.38), (4.39) and (4.42) to ¯nd

EN =
1

2
!2Nr

2
N

¹GN _́N = ¹GN!NrN cos (!N t+ ÁN )
(4.46) a,b



Combustion Instabilities in Solid Propellant Rocket Motors 

 

RTO-EN-023 11 - 81 

The statement \slowly varying amplitude and phase" means that the fractional changes of amplitude and
phase are small in one cycle of the oscillation and during the interval of averaging ¿ if ¿ is at least equal to the
period of the fundamental mode:

¿

rN

drN
dt

¿ 1 ;
¿

2¼

dÁN
dt

¿ 1 (4.47)

These inequalities imply that rN and ÁN may be treated as constants during the averaging carried out in (4.41). To
see this, imagine that rN for example, is expanded in Taylor series for some time t1 in the interval ¿ , t < t1 < t+¿ :

rN (t) = rN (t1) + (t¡ t1)
µ
drN
dt

¶
t1

+ ¢ ¢ ¢

For rN slowly varying, _rN doesn't vary much during a period and may be assigned some average value. The
increment t¡ t1 has maximum value ¿ ; so the second term is negligible according to the ¯rst of (4.41). Therefore
rN (t) ¼ rN (t1) for any t1 in the interval of averaging and the assertion is proved.

Substitution of (4.46) a,b in (4.42) then gives

!NrN
drN
dt

= ¹
rN
¿

Z t+¿

t

GN cos(!N t
0 + ÁN )dt0

and

drN
dt

= ¹
1

!N¿

Z t+¿

t

GN cos(!N t
0 + ÁN )dt0 (4.48)

The corresponding equation for the phase ÁN (t) is found by substituting (4.38) and (4.39) in (4.45) to give

rN
dÁN
dt

= ¡ ¹

!N
GN sin(!N t+ ÁN ) (4.49)

Now time average this equation over the interval ¿ , the left-hand side is approximately constant for theorem give
above, and the equation for ÁN(t) is

rN
dÁN
dt

= ¡¹ 1

!N¿

Z t+¿

t

GN sin(!N t
0 + ÁN )dt0 (4.50)

With the relations (4.39), equations (4.48) and (4.50) can be converted to equations for AN and BN :

dAN
dt

=
¹

!N¿

Z t+¿

t

GN cos!N t
0dt0

dBN
dt

= ¡ ¹

!N t

Z t+¿

t

GN sin!N t
0dt0

(4.51) a,b

Whichever pair one chooses to use, (4.48) and (4.50) or (4.51) a,b, the general formal problem of solving a system
of coupled second order equations (4.37) for the oscillators, has been converted to the simpler approximate formal
problem of solving a system of coupled ¯rst order equations. The essential basis for that conversion is the removal
of the fast oscillatory behavior with the de¯nition (4.38), a transformation made possible because the changes of
amplitudes and phases take place on a much slower (i.e. longer) time scale than do the oscillations. The presence
and role of two time scales is more evident in the following alternative derivation:

From the second equality of (4.38), we ¯nd the velocity

_́N = !N [AN cos!N t¡BN sin!N t] +
h
_AN sin!N t+ _BN cos!N t

i
Now enforce the condition corresponding to (4.45),

_AN sin!N t+ _BN cos!N t = 0 (4.52)

and the velocity is

_́N = !N [AN cos!N t¡BN sin!N t] (4.53)
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Substitution in (4.37) gives

!N

h
_AN cos!N t¡ _BN sin!N t

i
+ !2N [¡AN sin!N t¡BN cos!N t]
+ !2N [AN sin!N t+BN cos!N t] = ¹GN

and
_AN cos!N t¡ _BN sin!N t =

¹

!N
GN

Multiply by cos!N t and substitute (4.52) for _BN cos!N t to give

_AN cos
2 !N t¡ sin!N t

h
¡ _AN sin!N t

i
=

¹

!N
GN cos!N t

so
dAN
dt

=
¹

!N
GN cos!N t (4.54)

Similarly,

dBN
dt

= ¡ ¹

!N
GN sin!N t (4.55)

We now introduce two time-scales, ¿f the ¯rst scale, of the order of the period of the fundamental oscillation
(in fact, we might as well set ¿f = 2¼=!1); and ¿s, the slow scale characterizing transient changes of the amplitudes
and phases of the oscillations. Two corresponding dimensionless time variables can be de¯ned, tf = t=¿f and
ts = t=¿s. Thus we consider the amplitudes and phases to be functions of the slow variable ts while the forcing
functions GN depend on both tf and to because they depend on the ´N , (i = 1; 2; ¢ ¢ ¢ )

´N = AN (ts) sin
³
2¼
!N
!
tf

´
+BN (ts) cos

µ
2¼
!N
!1
tf

¶
In terms of the dimensionless time variables,

1

¿s

dAN
dts

=
¹

!N
GN cos!N t

and averaging over the fast variable we have

1

¿s

Z tf+¿f

tf

1

¿s

dAN
dt0s

dt0f =
¹

!N

1

¿f

Z t+¿f

tf

GN cos

µ
2¼
!N
!1
t0f

¶
dt0f

On the left-hand side, dAN=dt
0
s is assume to be sensibly constant in the interval ¿f and we have

1

¿s

dAN
dt0s

=
¹

!N¿f

Z t+¿f

tf

GN
¡
t0f ; t

0
s

¢
cos

µ
2¼
!N
!1
t0f

¶
dt0f (4.56)

Those parts of GN depending on t0s are taken also to be constant and if we now rewrite this equation in terms of
dimensional variables, we recover (4.51)a with ¿ = ¿f = 2¼=!. Similar calculations will produce again (4.51)b.
Note that due to the nonlinear coupling, the amplitude and phases of all modes normally change on roughly the
same scale as that for the fundamental mode; thus the single interval of averaging works for all modes.

In Section 7.2 we will use a continuation method to assess the ranges of parameters and other conditions
for which the ¯rst order equations give accurate results when compared with solutions to the complete oscillator
equations. In the development of the theoretical matters described in this book, the sets of ¯rst order equations
have been central. They remain extremely useful both for theoretical work and for applications.

4.5. The Procedure for Iterative Solution. The oscillator equations (4.33) and (4.34) are not yet in
a form that can be readily solved because the functions FN , de¯ned by (4.30) contain not only p

0 but also the
dependent variables ½0, T 0 and u0 in the functions h and f . With the two-parameter expansion as the basis,
the iteration procedure provides a means for expressing FN in terms of p0 only. Thus eventually the oscillator
equations become a system soluble for the modal amplitudes ´N (t). There are of course approximations required,
but magnitudes of their e®ects can always be estimated in terms of the parameters " and ¹. To appreciate how
the procedure is constructed, it is helpful always to keep in mind the correspondence between the smallness of "
and ¹, and the distortions they represent of the unperturbed classical acoustic ¯eld.
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There are two chief types of distortions or perturbations: Those represented by ", arising as nonlinear e®ects of
¯nite amplitudes,15 classi¯ed generally as energy transfer between modes; and those measured by ¹, consequences
of interactions, hence energy transfer, between the steady and unsteady ¯elds. Each of those types of perturbations
may be identi¯ed within the volume in question and at the boundary. Quite generally, then, we must take into
account perturbations of the classical acoustic ¯eld, associated with three kinds of energy transfer: linear transfer
between the mean and °uctuating motions; nonlinear transfer between modes, or mode coupling, independent of
the average °ow ¯eld; and nonlinear energy transfer between the mean °ow and °uctuating ¯elds. The way in
which we view and accommodate those perturbations determines our choice of basis functions ÃN used in the
modal expansion (4.27).

4.5.1. Linear Energy Transfer Between the Mean and Fluctuating Motions. Any combustor designed for
steady, or at most slowly varying conditions on the acoustic time scale, must have provision for supplying reactants
and exhausting products. There must therefore be average °ow within the volume and through openings in the
enclosing boundary. If the reactants are liquid or gaseous, then openings exist for both in°ow and out°ow. In
combustors for solid propellants, °ow enters at the boundary but there are not openings for that purpose.

(A) Volumetric Interactions

The general equations of motion in principle contain all interactions between the mean and °uctuating motions
within the volume. Many are shown explicitly as the bracketted terms [ ¹M],

©
¹M
ª
, [½1], fp1g, ¢ ¢ ¢ de¯ned in Section

(3.3). Those terms in the forms given there account for interactions of the mean °ow velocity with the acoustic
¯eld and have long served that purpose well in investigations of combustion instabilities. Additional consideration
are required to treat interactions associated with entropy and vorticity waves, including turbulence and noise, a
subject covered in Section (7.4).

Special e®ects also arise when the average temperature ¯eld is nonuniform; the last term in (4.33) represents
one consequence of nonuniform average temperature but others are contained in the formula given for h, equation
(3.55). Nonuniformities of temperature cause nonuniformities in the speed of sound which may be regarded
as nonuniformities in the index of refraction for acoustic waves. Thus in the general context of wave motions,
phenomena such as refraction and di®raction must arise. However, the analysis covered here for wave systems
slowly varying on the acoustic time scale, obscures wave phenomena of that sort; they have rarely been addressed
explicitly in the ¯eld of combustion instabilities and then only in connection with very special problems. However,
the consequences of refraction and di®raction are contained implicitly in distortions of the structure of the steady
waves.

It is extremely important that large di®erences in the average speed of sound be accounted for as accurately
as possible. That is best done by including them in the functions used in the modal expansion. Formally
that amounts to including all terms in h representing linear interactions between the acoustic and mean ¯elds,
in the equations for the Ãm. That is, such large perturbations are better not included in the procedure best
suited for dealing with small perturbations. In practice, the only example of this tactic have been concerned
with °ows in ducts containing a compact zone of heating thin relative to the acoustic wavelength. The modal
functions are then formed in piecewise fashion, the usual wave equation being solved separately for the two regions
characterized by di®erent uniform temperatures upstream and downstream of the zone of heating treated as a
surface of discontinuity. Then the functions are joined with suitable matching conditions.

For the most part, therefore, energy transfer between the acoustic ¯eld and the mean °ow within the volume
of a combustor is due to interactions with the mean velocity, characterized by the parameter ¹. The analysis is
strictly limited to perturbations linear in the Mach number of the mean °ow (see the footnote in the preceding
page).

(B) Boundary Conditions

The situation in respect to processes at the boundary is considerably more complicated and in fact cannot be
placed in a ¯rm basis without detailed examination of ancillary problems. Only two possibilities have so far been

15Recall that in this work, nonlinear behavior is measured in terms of the amplitude " of the unsteady motions. It is intrinsic
to their derivation (Section 3) that the governing equations are linear in ¹, i.e. in the Mach number of the mean °ow.
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of practical interest: physical openings in the boundary of the combustor; and a burning surface. Conditions to
be set on the acoustic ¯eld at an opening depend on the °ow ¯eld through and outside the boundary. In classical
acoustics with no °ow, an opening into an atmosphere held at constant pressure is almost perfectly re°ecting,
with the °uctuating pressure nearly zero in the plane of the opening. A perfectly re°ecting rigid wall causes
the °uctuating velocity to vanish there. Thus in those two limits, the boundary conditions to 0th order on the
pressure ¯eld are respectively p0 = 0 and n̂ ¢ rp0 = 0.

Subsonic °ow through an ori¯ce presents a boundary condition to acoustic waves closer to the case of no °ow,
p0 ¼ 0, than to a rigid wall. On the other hand, if the inlet °ow is choked upstream close16 to the ori¯ce, or the
outlet °ow exhausts through a choked nozzle, the boundary condition is closer to the for a rigid wall, n̂ ¢rp0 ¼ 0.
That is the case for propulsion systems, with the possible exception of the primary combustion chamber in a gas
turbine. The actual boundary conditions are more complicated but for linear behavior can be represented by
impedance or admittance functions de¯ned for steady waves. For the more common case of choked °ows, that
boundary condition is expressed as

n̂ ¢ û (rs; w) = As (rs; w) p̂ (rs; w) = ¹as (rs; w) p̂ (rs; w) (4.57)

where As = ¹as is the dimensional admittance function shown here to be proportional to the Mach number of
the average °ow. (Tsien 1952; Crocco and Cheng 1956; Culick 1961, 1963) Generally, As is a complex function,

As = jAsjeiÁA = ¹jasjeiÁA (4.58)

The representation (4.57) is based on the idea that when exposed to an oscillatory °uctuation of pressure,
a physical surface responds in ¯rst approximation such that its velocity normal to itself is proportional to the
impressed pressure, possibly with a phase or time delay. That idea is extended in the present context to describe
°uctuations of °ow at a ¯ctious surface forming part of the boundary enclosing the combustor volume, or at the
downstream edge of the combustion zone at a burning surface. Thus we have a simple and direct way of making
explicit the ¯rst term in the de¯nition (3.57) of the boundary function f for steady waves:

¹½
@M0

@t
¢ n̂ = ¹½¹a

@u0

@t
¢ n̂ = ¹½¹a

@

@t

£
n̂ ¢ û (rs; w) ei¹akt

¤
= ¹¹½¹aas (rs; t) i¹akp̂ (rs; w) e

i¹akt

= ¹¹½¹a2k
¡
ijasjeiÁa

¢
p̂ (rs; w) e

i¹akt

(4.59)

An equivalent form is

¹½
@M0

@t
¢ n̂ = ¹¹½¹a2k f¡Im(as) + iRe(as)g p̂ (rs; w) ei¹akt (4.60)

Although the admittance function is de¯ned for steady waves initially, (4.49) can be converted to a form
approximately applicable to problems having arbitrary dependence on time. The time derivative of some function
' for steady waves, so we can make the correspondence

@'

@t
Ã! i¹ak

@'

@t

Hence we write (4.49) as

¹½
@M0

@t
¢ n̂ = ¹¹½¹a

·
¹ak Im fasg p0 + Re fasg @p

0

@t

¸
(4.61)

This form of a boundary condition will be useful in later applications.

The chief point here is that for choked inlet and exhaust °ows, the function f in the boundary condition
n̂ ¢ rp0 = ¡f is of order ¹. That is, perturbations from the condition de¯ning a rigid impermeable wall are all
proportional to the magnitude of the Mach number of the mean °ow. Corresponding reasoning applies to the
less important case of subsonic °ow exhausting into surroundings held at constant pressure.17 Now we set the

16`Close' means within a short distance relative to the wavelength of the dominant oscillation.
17Less important for practical applications. However there are many laboratory devices operating at close to atmospheric

pressure and exhausting into the atmosphere for which the condition treated here is appropriate.
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boundary condition by using (3.51) evaluated at the boundary; for linear steady waves we have

p0 =
1

¹ak

·
°¹pr ¢M0

1 + ¹f[p]1g ¡
1

"
P0
¸
r=rs

(4.62)

Again we may de¯ne an admittance function to eliminate r ¢M0
1 in favor of the local pressure °uctuation. We

leave the calculation to special applications.

We conclude that for linear problems, perturbations of the classical acoustics problem due to energy transfer
between the mean and unsteady ¯elds are represented to order ¹, both within the volume and at the boundary.
This result is of course consistent with the order to which the di®erential equations are valid within the approx-
imation used here (see a remark following equation (3.39). For that reason, we cannot in any event carry terms
of higher order in ¹ unless the governing equations used here are re-derived.

As an example to illustrate some implications of the preceding remarks, consider the case of °ow through a
uniform duct of length L, supplied through choked valves and exhausting through a choked nozzle. Suppose that
by some means, for example by installing a speaker, oscillations can be excited and sustained in the duct. If there
were no °ow and rigid plates were placed at both ends (z = 0; L), classical `organ pipe' acoustic modes would be
found experimentally, having frequencies !N = n(¹a=L). The velocity and pressure distributions for these steady
axial modes are proportional to sin kNx and cos kNx respectively. Suppose we set, for example,

p0(z; t) = p̂0 cos kNz cos!N t (4.63)

where !N = ¹akN . The unperturbed acoustic momentum equation,

¹½
@u0

@t
= ¡rp0

is satis¯ed with (4.52) if u0 has only the axial component,

u0(z; t) =
p̂0
¹½¹a
sin kNz sin!N t (4.64)

The velocity ¯eld has nodes (u0 = 0) at the ends and the pressure ¯eld has anti-nodes, reaching maximum
amplitude p̂0 when t = 0, 2¼=!N , 4¼=!N , ¢ ¢ ¢ . Now suppose that average °ow is introduced and that the cross-
sectional areas available for the °ow upstream and downstream are small fractions of the cross-sectional area of
the duct. Then the average Mach numbers at z = 0, L are small (¹¿ 1). Hence the distortions of the classical
organ pipe modes are small. In particular, the modes of the velocity ¯eld are slightly displaced by the same
amounts downstream of their unperturbed positions at x = 0, L. Thus the wavelength and frequency of the
modes are unchanged and the unperturbed mode shapes are close approximations to the actual shapes with the
°ow, as sketched in Figure 4.1.

0 LL / 2 

NODES

Figure 4.1. Fundamental Longitudinal Mode, Velocity Mode Shape: { { { { Classical (no °ow);
|| Duct with °ow choked upstream and downstream

If the Mach numbers at the entrance (z = 0) and at the exit (z = L) are not small, then the nodes of the
velocity wave are displaced by larger amounts, but the wavelength, and hence the frequency, su®er only small
changes. This behavior suggests what is true quite generally in practice, that the processes in a combustion
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chamber have relatively small e®ects in the frequencies of the normal modes. Consequently, as we will empha-
size repeatedly, comparison of observed frequencies with those predicted is not a useful basis for assessing the
correctness of the theory in question.

4.5.2. Energy Transfer Between Modes; Nonlinear Mode Coupling. If the functions ÃN used in the modal
expansion are those computed according to classical acoustics, then in general linear coupling between modes
will appear in the right-hand sides of the systems (4.33) and (4.34). When the mean °ow ¯eld is nonuniform,
interactions between the mean and °uctuating ¯elds will cause linear mode coupling proportional to the average
Mach number. Formally such contributions are included among those discussed in the preceding section, i.e. they
are of order ¹.

In principle, linear coupling between modes can be formally eliminated by transformation to a new set of modal
expansion functions by diagonalizing the matrix of coe±cients (Culick 1997). There may be some applications for
which the linear coupling should be explicitly treated, but here we assume that either linear coupling is absent
on physical grounds or has been eliminated by suitable transformation.

Hence energy transfer between modes is of order "2 or higher and is necessarily nonlinear; calculations in the
next section show that we can write the system (4.34) schematically in the form

Ä́N + !
2
N´N = ¡¹ (DN _́N +EN´N ) + FNLN (4.65)

The function FNLN contains all nonlinear processes. According to its development in Section 3 consists of a sum
of groups of terms of order ", "2, ¢ ¢ ¢ , ¹", ¹"2, ¢ ¢ ¢ . In general, FN cannot be represented by a diagonal matrix:
Nonlinear coupling of the modes always exists and, among other consequences, is an important process in the
evolution of linear unstable motions into stable limit cycles.

4.5.3. Zeroth and First Order Solutions to the Oscillator Equation. We defer to a later section analysis
including nonlinear energy transfer of order ¹", and we assume that the average temperature is approximately
uniform, so the last term of (4.33) is negligible. The problem comes down to solving (4.34) for the ´N (t),

Ä́N + !
2
N´N = FN (4.66)

with

FN = ¡ ¹a2r
¹prE2N

8<:
ZZZ

v

hÃNdV +

ZZ
S

°fÃNdS
9=; (4.67)

and h and f are given by (3.55) and (3.57):

h =¡ ¹½
·
r ¢ ¡ ¹M ¢ rM0 +M0 ¢ r ¹M¢¡ 1

¹a2
@

@t

¡
¹M ¢ rp0 + °p0r ¢ ¹M¢¸

¡
½
¹½r ¢

µ
M0 ¢ rM0 +

½0

¹½

@ ¹M0

@t

¶
¡ 1

¹a2
@

@t
(M ¢ rp0 + °p0r ¢M)

¾
+

·
1

¹½
r ¢

µ
1

¹½
FFF0
¶
¡ 1

¹a2
@PPP0

@t

¸
+

½
1

¹p
r ¢

µ
1

¹½
FFF0
¶
¡ 1

¹a2
@PPP0

@t

¾ (4.68)

f =¹½
@M0

@t
¢ n̂+ n̂ ¢ £¹½M0 ¢ r ¹M+ ¹M ¢ rM0¤+ n̂ ¢½¹½M0 ¢ rM0 + ½0

@M0

@t

¾
+ [FFF0] ¢ n̂+ fFFF0g ¢ n̂ (4.69)

Recall that the left-hand side of (4.55) follows upon inserting in the linear wave operator the modal expansion
(4.27) for p0;

p0 = ¹pr

MX
m=1

´m(t)Ãm(r) (4.70)

The iterative procedure is a way of expressing the driving forces FN in terms of the amplitudes ´m, so (4.55)
becomes a system of equations for the amplitudes. As we have explained earlier (Section 3.3) we use " as a
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measure of the size of the pressure disturbance and write always

p0 = "p1(r1; t) (4.71)

However, we must allow the other dependent variables vary with " in a more complicated manner; it is reasonable
at this point to assume dependence as a power series in ":

M0 = "M1 + "
2M2 + ¢ ¢ ¢

T 0 = "T1 + "2T2 + ¢ ¢ ¢
(4.72)

and so forth. All components of the °uctuations, p1, M1, M2, ¢ ¢ ¢ , T1, T2, ¢ ¢ ¢ become distorted by the mean
°ow. That possibility is taken into account by writing

p0 ="p1 = "
£
p10 + ¹p11 + ¹

2p12 + ¢ ¢ ¢
¤

M0 ="M1 + "
2M2 + ¢ ¢ ¢ = " [M0

10 + ¹M11 + ¢ ¢ ¢ ]
+ "2 [M0

20 + ¹M21 + ¢ ¢ ¢ ]
T ="T1 + "

2T2 + ¢ ¢ ¢ = " [T10 + ¹T11 + ¢ ¢ ¢ ]
+ "2 [T20 + ¹T21 + ¢ ¢ ¢ ]

(4.73)

It is apparent that the number of functions to be determined rapidly gets out of hand as more terms are retained
in the series expansion. However to the order we choose to investigate here, that di±culty doesn't appear, for
the following reason. Examine a typical terms in h say the ¯rst in each of the brackets:

h = ¡¹½ £r ¢ ¡ ¹M1 ¢ rM0¢+ ¢ ¢ ¢ ¤¡ f¹½r ¢ (M0 ¢ rM0) + ¢ ¢ ¢ g+ ¢ ¢ ¢
= ¡¹¹½r ¢ £ ¹M1 ¢ r

¡
"M0

1 + "
2M0

2 + ¢ ¢ ¢
¢
+ ¢ ¢ ¢ ¤¡ ¹½©r ¢ ¡"M0

1 + "
2M0

2 + ¢ ¢ ¢
¢ ¢ r ¡"M0

1 + "
2M0

2 + ¢ ¢ ¢
¢
+ ¢ ¢ ¢ª+ ¢ ¢ ¢

Now substitute (4.62) to give

h =¡ ¹¹½r ¢ £ ¹M1 ¢ r
¡
"M0

10 + "¹M
0
11 + ¢ ¢ ¢+ "2M0

20 + "
2¹M0

21 + ¢ ¢ ¢
¢
+ ¢ ¢ ¢ ¤ =

¡ ¹½r ¢ f("M10 + "¹M
0
11 + ¢ ¢ ¢ ) ¢ r ("M0

10 + "¹M
0
11 + ¢ ¢ ¢ ) + ¢ ¢ ¢ g+ ¢ ¢ ¢

Multiplying the various brackets and showing explicitly only those terms to be retained, we ¯nd

h = ¡¹"¹½r ¢ £ ¹M1 ¢ rM0
10 + ¢ ¢ ¢

¤¡ ¹½r ¢ ©"2M10 ¢ rM10 + ¢ ¢ ¢
ª
+ ¢ ¢ ¢

This procedure leads eventually to the forms for h and f with only terms of order ¹" and "2:

h =¡ ¹"
·
¹½r ¢ ¡ ¹M1 ¢ rM10 +M10 ¢ r ¹M1

¢¡ 1

¹a2
@

@t

¡
¹M1 ¢ rp10 + °p10r ¢ ¹M1

¢¸
¡ "2

½
¹½r ¢

µ
M10 ¢ rM10 +

½10
¹½

@M10

@t

¶
¡ 1

¹a2
@

@t
(M10 ¢ rp10 + °p10r ¢M10)

¾
+ ¹"

·
1

¹½
r ¢

µ
1

¹½
FFF0
¶
¡ 1

¹a2
@PPP0

@t

¸
+ "2

½
1

¹½
r ¢

µ
1

¹½
F0F0F0
¶
¡ 1

¹a2
@PPP0

@t

¾
"2

(4.74)

f =¹½

·
@M0

@t
¢ n̂
¸
¹"

+ ¹½

½
@M0

@t
¢ n̂
¾
"2
+ ¹"¹½n̂ ¢ £M10 ¢ r ¹M1 + ¹M1 ¢ rM10

¤
+ "2¹½n̂ ¢ fM10 ¢ rM10g+ ¹" [FFF0 ¢ n̂]¹" + "2 fFFF0 ¢ n̂g"2

(4.75)
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5. SOME FUNDAMENTALS OF ACOUSTICS

According to the experiences related in Section 1, combustion instabilities may be regarded as unsteady
motions closely approximated as classical acoustical motions with perturbations due ultimately to combustion
processes. That view, initially an emprical conclusion, motivated the general form of the analytical framework
constructed in Section 4. Relatively little knowledge of classical acoustics is required to understand and apply
that construction formally.

However, interpretation of the details of observed behavior, and e®ective use of the theory to develop accurate
representations of actual motions in combustors require ¯rm understanding of the fundamentals of acoustics. The
purpose of this section is to provide a condensed summary of the basic parts of the subject most relevant to the
main subject of this book. We therefore ignore those processes distinguishing combustion chambers from other
acoustical systems. Except for brief discussion of nonlinear gas dynamics, we restrict attention to the Problem O
de¯ned in Sections 3.3.3 and 3.4.

5.1. The Linearized Equations of Motion; The Velocity Potential. We will be concerned here with
unsteady motions in a pure non-reacting gas at rest. The governing equations are 3.40 for Problem O, Classical
Acoustics, leading to the corresponding wave equation and its boundary condition, equations 3.52 with h0 and
f0 given by 3.55 for constant average density ¹½ and written with dimensional variables:

r2p0 ¡ 1

¹a2
@2p0

@t2
= r ¢FFF0 ¡ 1

¹a2
@P0

@t

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂¡FFF0 ¢ n̂

(5.1) a,b

In the absence of condensed material, the de¯nitions (A.18) and (A.20) of the unperturbed functions FFF and PPP
are:

FFF = r ¢ $¿¿¿v +me ¡ uwe (5.2)

P=
R

Cv

h$
¿¿¿v ¢ r ¢ u¡r ¢ q¡Qe

i
+RTwe (5.3)

where
$
¿v¿v¿v : viscous stress tensor (force/area)

q : rate of conductive heat transfer (energy/area-s)

me : rate of momentum addition by external sources (mass-velocity/volume-s)

we : rate of mass addition by external sources (mass/volume-s)

Qe : rate of energy addition by external sources (energy/volume-s)

Thus the function FFF contains all processes causing changes of momentum of the gas, except for that due to
internal pressure di®erences; and P represents all sources of energy addition. The linearized forms of the source
terms will be constructed as required for speci¯c problems. For most of this section we will treat only problems
for which h0 and f0 vanish, giving the simplest equations for classical acoustics,

r2p0 ¡ 1

¹a2
@2p0

@t2
= 0

n̂ ¢ rp0 = 0
(5.4) a,b

With no sources in the volume or on the boundary, motions exist only for initial value problems in which the
pressure and its time derivative are speci¯ed at some initial time, t0.

In this case, the wave equation is used to describe freely propagating waves following an initial disturbance or,
when the boundary condition (5.13)b is enforced, the normal modes for a volume enclosed by a rigid boundary.
The condition n̂ ¢ rp0 = 0 means that the velocity normal to the boundary is zero, because the acoustic velocity
is computed from the acoustic momentum (3.40)b written in dimensional form with FFF = 0:

¹½
@u0

@t
= ¡rp0 (5.5)
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so

n̂ ¢ rp0 = ¹½
@u0

@t
from which

@

@t
(n̂ ¢ u0) = ¡1

¹½
n̂ ¢ rp0 = 0 (5.6)

Hence n̂ ¢ u0 = 0 always

We have just derived the equations for classical acoustics by specializing the general equations of unsteady
motion. It is also useful to arrive at the same conclusion in a slightly di®erent way, beginning with the equations
for inviscid motion in a homogeneous medium:

Conservation of Mass :
@½

@t
+r ¢ (½u) = 0 (5.7)

Conservation of Momentum : ½
@u

@t
+ ½u ¢ ru+rp = 0 (5.8)

Conservation of Energy : ½
@

@t

µ
e+

1

2
u2
¶
+ ½u ¢ r

µ
e+

1

2
u2
¶
+r ¢ (pu) = 0 (5.9)

Equation of State : p = ½RT (5.10)

Remove the kinetic energy from the energy equation by subtracting u¢ (momentum equation) to give

½
De

Dt
+ pr ¢ u = 0 (5.11)

where D
Dt =

@( )
@t +u ¢ r( ). Because all irreversible processes have been ignored the entropy of a °uid element

remains constant, DsDt = 0, a result that follows directly by substituting the mass and energy equations in the
thermodynamic de¯nition of the entropy of an element:

½
Ds

Dt
= ½

De

Dt
¡ p

½

D½

Dt
= ¡pr ¢ u+ p

½
(½r ¢ u) = 0 (5.12)

Taking the density to be a function of pressure and entropy, we can write for an isentropic process

d½ =

µ
@½

@s

¶
p

ds+

µ
@½

@p

¶
s

dp =

µ
@½

@p

¶
s

dp =
1

a2
dp (5.13)

where

a2 =

µ
@½

@p

¶
s

(5.14)

will turn out to be the speed of propagation of small disturbances, the 'speed of sound'. With this de¯nition, we
can rewrite the continuity equation (5.7) for the pressure:

@p

@t
+ ½a2r ¢ u+ u ¢ rp = 0 (5.15)

This result is quite general: in particular, its derivation did not involve using the special characteristics of a
perfect gas.

Alternatively, we may derive this equation for the special case of a perfect gas for which de = Cv(T )dT and
the equation of state is (5.10). Add T times (5.7) to C¡1v times (5.11) with de = CvdT ; then use (5.10) to ¯nd

@p

@t
+

µ
1 +

R

CV

¶
pr ¢ u+ u ¢ rp = 0 (5.16)

But R = Cp ¡ Cv, so R=Cv = ° ¡ 1 for a perfect gas. Comparison of (5.14) and (5.15) gives the formula for the
speed of sound in a perfect gas:

a2 =

r
°p

½
=
p
°RT (5.17)
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For an isentropic process of a perfect gas, equation (5.13) can be integrated,

d½ = a2dp =
½

°p
dp

which gives

p = p0

µ
½

½0

¶°
(5.18)

where ½0, p0 are constant reference values.

We may now eliminate the density from the momentum equation (5.8) to ¯nd

@u

@t
+ u ¢ ru+ 1

½0

µ
p0
p

¶1=2
rp = 0 (5.19)

Finally, we obtain the wave equation for the pressure by di®erentiating (5.16) with respect to time and substituting
(5.19) and a2 = °p=½:

@2p

@t2
¡ a20

p

p0
r ¢

· rp
(p=p0)1=°

¸
= °pr ¢ (u ¢ ru)¡ ° @p

@t
r ¢ u¡ @

@t
(u ¢ rp) (5.20)

The boundary condition is de¯ned by taking the component of (5.19) normal to the boundary:

n̂ ¢ rp = ¡
µ
p

p0

¶1=2
½0

·
n̂ ¢ @u

@t
+ n̂ ¢ r (u ¢ ru)

¸
(5.21)

Equation (5.20) and its boundary condition are easily linearized by assuming that the gas is at rest and that
the °uctuations are all of the same order. To second order in the °uctuations we ¯nd

@2p0

@t2
¡ a20r2p0 =

½
p0r ¢ (u0 ¢ ru0)¡ ° @p

0

@t
r ¢ u0 ¡ @

@t
(u0 ¢ rp0)

¾
+ ½0

(
(° ¡ 1)

µ
p0

p0

¶
r2
µ
p0

p0

¶
¡
µ
r p

0

p0

¶2) (5.22)

n̂ ¢ rp0 = ¡½0 @u
0

@t
¢ n̂¡ ½0

½
1

°

µ
p0

p0

¶
@u0

@t
¢ n̂+ n̂ ¢ (u0 ¢ ru0)

¾
(5.23)

Equations (5.4) a,b are recovered when the second order terms are neglected.

5.1.1. The Velocity Potential. It is often convenient to introduce scalar and vector potentials © and A from
which the velocity is found by di®erentiation:

u = ¡r©+r£A (5.24)

With this representation, the dilation and curl (rotation) of the velocity ¯eld are separated:

r ¢ u0 = ¡r2© ; r£ u0 = r£r£A (5.24)

In general, both potentials are required if the mean velocity is non-zero or sources are present in the °ow. The
boundary conditions may also induce non-zero rotational °ow. Here only the scalar potential is required for small
amplitude motions because in that limit, the classical acoustic momentum is (5.5); taking the curl with uniform
average density gives

¹½
@

@t
(r£ u0) = ¡r£ (rp0) = 0

Hence if r£ u0 = 0 initially, it remains so and we can take A = 0.

The acoustic equations for momentum, 3.40 and 3.40 in dimensional variables are

@u0

@t
+
1

¹½
rp0 = 0

@p0

@t
+ °¹½r ¢ u0 = 0

(5.25) a,b
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Di®erentiate the ¯rst with respect to time and insert the second to give the wave equation for the velocity
°uctuation,

@2u0

@2
¡ ¹a2r2u = 0 (5.26)

Now substitute u0 = ¡r© to give
r
·
@2©

@t2
¡ ¹a2r2©

¸
= 0

which is satis¯ed if the terms in brackets are a function of time only, so

@2©

@t2
¡ ¹a2r2© = f(t) (5.27)

The right-hand side represents a source ¯eld for the potential, uniform over all space. We may absorb f(t) by

de¯ning a new potential ©1 = ©+
R t
dt0
R t0
f(t1)dt1 and relabel ©1 ! © to ¯nd18 the wave equation for ©:

@2©

@t2
¡ ¹a2r2© = 0 (5.28)

When the velocity potential is used, the acoustic velocity is calculated with (5.24) and A = 0

u0 = ¡r© (5.29)

The acoustic pressure is found by setting u0 = ¡r© in the momentum equation (5.25) a,b, giving

r
µ
¡@©
@t
+
1

¹½
p0
¶
= 0

This solution is satis¯ed if the terms in parentheses are a function of t only, g(t), so

p0 = ¹½

µ
@©

@t
+ g(t)

¶
(5.30)

As above, we may de¯ne a new potential ©(t) +
R t
g(t0)dt0 = ©1(t) and hence absorb g(t) so we may rede¯ne

©1 ! © and

p0 = ¹½
@©

@t
(5.31)

The conditions under which the acoustic ¯eld can be completely described by a velocity potential alone are
precise and, so far as problems involving combustion are concerned, very restrictive. Any analysis or theory based
on the velocity potential alone must also include demonstration that the vector potential can be ignored, i.e. set
equal to a constant or zero. In general, the presence of a non-uniform mean °ow ¯eld and various kinds of sources
in the problems we are concerned with in this work, require that the velocity ¯eld be derived from both scalar
and vector potentials. Use of the unsteady pressure as the primary °ow variable provides a simpler approach for
many purposes, but, as we will ¯nd later, apparently possesses unavoidable fundamental limitations.

5.2. Energy and Intensity Associated with Acoustic Waves. In this section we establish de¯nitions
of energy density and the intensity|i.e. the °ow of energy|for classical acoustic waves. The de¯nitions are only
approximate under the more complicated conditions existing in a combustor but the general ideas remain.

Following Landau and Lifschitz (1959) we return to the basic energy equation (5.9) for inviscid °ow. The
idea is to establish a connection between the rate of change of something (the energy) within a volume and the
°ow of something (the intensity) through the closed boundary of that volume. Integrate the energy equation over
a volume ¯xed in space; and apply Gauss' theorem to the terms on the right-hand side:

@

@t

Z
½

µ
e+

u2

2

¶
dV = ¡

Z
r ¢

·
½u

µ
e+

u2

2

¶¸
dV ¡

Z
r ¢ (½u) dV

= ¡
ZZ
°
µ
e+

u2

2

¶
½u ¢ dS¡

ZZ
°½u ¢ dS

18Alternatively, one can reason that when the velocity is found by taking the gradient of © +
RR
f , the term in f contributes

nothing and hence can be simply dropped. The desired solution is una®ected by setting f = 0.
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This relation must be written to second order in the isentropic °uctuations; for example,

½e = ¹½¹e+ ½0
·
@

@½
(½e)

¸
¹½

+
1

2
½
02
·
@2(½e)

@½2

¸
¹½¹e

+ : : :

= ¹½¹e+ ½0¹k +
1

2

½
02

¹½¹a2
+ : : :

Eventually the result is

@

@t

Z
EdV = ¡

ZZ
°Eu ¢ dS¡

ZZ
°p0u0 ¢ dS (5.32)

where

E=
1

2

p
02

¹½¹a2
+
1

2
¹½u

02 (5.33)

is the acoustic energy per unit volume and p0u0 is the intensity, the °ux of acoustic energy through an area
normal to the direction of propagation (energy/area-S).

The ¯rst term on the right-hand side of (5.32) is third order in the °uctuations and must be dropped. Hence
we have the important result interpreted in Figure 5.1.

@E

@t
+r ¢ (p0u0) = 0

Figure 5.1. Acoustic Energy and Intensity

Table 5.1 summarizes the basic properties of plane sinusoidal waves. Brackets h i denote time averages over
some interval ¿

h( )i = 1

¿

Z t+¿

T

( )dt0 (5.34)

5.3. The Growth or Decay Constant. In practice, due to natural dissipative processes, freely propagating
waves and oscillations in a chamber will decay in space and time if there is no external source or energy. If there
is an internal source of energy, waves may be unstable, having amplitudes increasing in time. The basic measure
of the growth or decay of waves is the constant appearing in the exponent describing the sinusoidal spatial and
temporal dependence of small amplitude waves, the de¯nitions (5.62). For `standing' or `stationary' waves in a
chamber, the wavelength, and hence wavenumber, is real and constant, but the frequency is complex:

! ! ! + i® (5.35)

and the variables of the motion have the behavior in time

e¡i(!+i®)t ´ e¡i!te®t (5.36)

For this de¯nition (5.34), ® < 0 means that the waves decay.

Normally in practice,
¯̄
®
!

¯̄ ¿ 1, implying that the fractional change of amplitude is small in one cycle of
the oscillation. Thus when time averaging is carried out over one or a few cycles, e®t may be taken as roughly
constant, and the average energy density computed with (5.32) and (5.33), is

hEi = e2®t 1
4

· jp̂j2
¹½¹a2

+ ¹½jûj2
¸

(5.37)
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Table 5.1.

Results for Rightward and Leftward Traveling Sinusoidal Waves

Wave to Right Wave to Left

p0+ = p̂+e¡i(!t¡kx) p0¡ = p̂¡e¡i(!t+kx)

u0+ = p̂+e
¡i(!t¡kx) u0¡ = û¡e

¡i(!t+kx)

û+ =
p̂+
½0a0

û¡ = ¡ p̂¡
½0a0

"+ =
p
02
+

½0a0
"¡ =

p
02
¡

½0a0

l+ = p
0
+u

0
+ =

p
02
+

½0a0
l¡ = p0¡u0¡ = ¡ p

02
¡

½0a20

h( )i = 1
¿

R t+¿
t

( )dt0

hp02+i = 1
2 p̂
2
+ hp02¡i = 1

2 p̂
2¡

h"+i = p̂2+
2½0a20

h"¡i = p̂2¡
2½0a20

hl+i = p̂2+
2½0a0

hl¡i = p2¡
2½0a0

More generally: p0 = p̂ei(!t+') ; ¹u0 = ûei(!t+')

h"i = 1
4

h
jp̂j2
½0a20

+ ½0jûj2
i
= 1

4(p
0p

0¤ + ½0u0 ¢ u0¤)

hli = 1
2 jp̂jjûj cos('¡ Ã) = 1

4(p
0¤u0 + p0u

0¤)

where ( )¤ denotes complex conjugate.

Hence we have the important interpretations which serve as the basis for measuring values of ®:

® =
1

jp̂j
djp̂j
dt

® =
1

2hEi
dhEi
dt

(5.38) a,b

The sign of ® is a matter of de¯nition and has no fundamental signi¯cance. If the time dependence is taken to
be ei(!+i®)t then ® < 0 means that waves are ampli¯ed.

The formulas (5.39) de¯ne local values of the growth constant. It is often more meaningful to know the value
for the entire volume of the system in question, found by using

R hEidV rather than hEi:

® =
1

2
R hEidV d

dt

Z
hEidV (5.39)

5.4. Boundary Conditions: Re°ections from a Surface. In the absence of other sources, the linearized
boundary condition on the pressure at a surface is the ¯rst term of (5.1 b), here in dimensional form:

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (5.40)
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The acoustic surface impedance za is de¯ned by

u0 ¢ n̂ = 1

za
p0 (5.41)

and the acoustic surface admittance ya is the reciprocal of the admittance:

ya =
1

za
(5.42)

Then for harmonic motions, p0 = p̂e¡i!t, we can rewrite (5.40) as

n̂ ¢ rp0 = ¡i ¹½!
za
p0 = ¡i¹½!yap0 (5.43)

The units of impedance are (pressure/velocity) ´ (density £ velocity). Hence for the medium, the product ¹½¹a is
called the characteristic impedance, having value 42 g/cm2-s. at standard conditions. Dimensionless forms are
de¯ned as:

acoustic impedance ratio: ³a =
za
¹½¹a

acoustic admittance ratio: ´a =
1

³a

(5.44)

In general, impedance functions are complex; the real and imaginary parts are called:

Re(za) : acoustic resistance

Im(za) : acoustic reactance
(5.45)

From (5.41) and (5.42), the surface admittance is

ya =
u ¢ n̂
p0

and the dimensionless surface admittance ratio is

´a = ¹½¹aya =
¹½¹a2

¹p

¹M0 ¢ n̂
p0=¹p

= °
M 0
n

p0=¹p
(5.46)

where M 0
n is the °uctuation of the Mach number normal to the surface.

If the surface is impermeable, the velocity at the surface is the velocity of the surface itself. However, if
the surface is permeable, or, as for a burning propellant, mass departs the surface, then the impedance and
admittance functions are de¯ned in terms of the local velocity °uctuations presented19 to the acoustic ¯eld, no
matter what their origin.

Quite generally then, the admittance function represents the physical response of processes at the surface.
It is of course an assumption that in response to an impressed pressure °uctuation, the °uctuation of velocity
normal to the surface is proportional to the pressure change. Alternative de¯nitions of quantities representing
the acoustic boundary condition at a surface will arise when we consider special situations.

5.4.1. Re°ections of Plane Waves at a Surface. Con¯nement of waves in a chamber to form modes necessarily
involves re°ections at the boundary surfaces. In solid propellant rockets the processes causing re°ection are
complicated, being responsible not only for con¯ning the waves but also are the dominant means for transferring
energy to the oscillating ¯eld in the chamber. Even at inert surfaces, more than the simple process of re°ection
is involved. Viscous stresses and heat conduction in the region adjacent to a surface cause dissipation of energy,
discussed in Section 5.6.

Here we assume that all activity at the surface can be represented by a complex impedance or admittance
function. The calculation follows that discussed by Morse and Ingard (1968). We consider re°ection of a planar
wave, Figure 5.2, allowing for the possibility of unequal angles of incidence and re°ection, and for simplicity we

19For burning propellants, care must be taken with de¯nition of the surface at which the boundary condition is imposed. Usually
the velocity at the `edge' of the combustion zone in the gas phase is the most convenient choice. Thus the admittance presented to
the acoustic ¯eld is not that at the burning surface itself.
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assume that there is no transmitted wave. The incident wave travels in the direction de¯ned by the unit vector
k̂i and the wavenumber vector is

k =
2¼

¸
k̂ (5.47)

We can represent the acoustic pressure and velocity in this plane wave by

Figure 5.2. Re°ection of a Plane Wave. Plane waves propagating in direction k = 2¼
¸ k̂

p0(r; t) = gi(ki ¢ r¡ !t)

u0(r; t) =
k̂r
¹½¹a
gi(ki ¢ r¡ !t)

(5.48) a,b

Similar formulas hold for the re°ected wave with ki replaced by kr lying in the direction de¯ned by the unit
vector k̂r. The representations are therefore:

Incident Wave Re°ected Wave

p0i = ui(»i) p0r = gr(»r)

u0i = k̂i
1
¹½¹agi(»i) u0r = k̂r

1
¹½¹agr(»r)

»i = ki ¢ r¡ !t »r = kr ¢ r¡ !t

= k(x sin µi ¡ y cos µi)¡ !t = k(x sin µr ¡ y cos µr)¡ !t

Because the frequency is the same for the incident and re°ected waves, so are the magnitudes of the wavenum-
bers:

jkij = !

¹a
= jkrj (5.49)

Re°ection is assumed to occur at y = 0. By de¯nition of za, the surface impedance, with the normal velocity
outward from the surface equal to uy = u ¢ ĵ = ¡u ¢ n̂ where n̂ is the unit outward normal vector:

za =

µ
p0

u0y

¶
y=0

= ¹½¹a
gi(kx sin µi ¡ !t) + gr(kx sin µr ¡ !t)

cos µigi(kx sin µi ¡ !t)¡ cos µrgr(kx sin µr ¡ !t) (5.50)

In general za is variable along the surface. Suppose that in fact za is constant, independent of x. That can be
true if

µi = µr = µ

gr(») = ¯gi(»)
(5.51)
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Then (5.50) becomes

za cos µ = ¹½¹a
1 + ¯

1¡ ¯ (5.52)

and the complex re°ection coe±cient ¯ is related to the surface impedance by

¯ =
za cos µ ¡ ¹½¹a
za cos µ + ¹½¹a

(5.53)

This result is special because no transmitted wave has been accounted for. For example, if za = ¹½¹a|perfect
impedance matching exists at the interface|(5.52) gives ¯ = 0 when µ = 0, so there is no re°ected wave. That is
true in one sense because in physical terms za = ¹½¹a means that the same gas exists in both sides of the interface.
Thus we are simply describing wave propagation in a continuous medium. On the other hand, the physical picture
treated here accommodates no transmitted wave, which means that when there is no re°ection, processes must
exist at the interface providing perfect absorption.

Now suppose µ 6= 0 but za = ¹½¹a. Then (5.52) gives ¯ non-zero, i.e. partial absorption and some of the
incident wave is re°ected.

5.5. Wave Propagation in Tubes; Normal Modes. The simplest form of combustor is a straight tube,
having generally non-uniform cross-section and not necessarily axisymmetric. Although the changes of cross-
section may be abrupt|even discontinuous|experience has shown that good results may be obtained by assuming
that the velocity °uctuations are uniform at every section and parallel to the axis: the °ow is treated as one-
dimensional. The governing equations are given in Appendix B, equations (B.2){(B.4) with no sources:

Conservation of Mass :
@½0

@t
+
@

@x
(¹½u0Sc) = 0 (5.54)

Conservation of Momentum : ¹½
@u0

@t
+
@p0

@x
= 0 (5.55)

Conservation of Energy : ¹½Cv
@T 0

@t
+ ¹p

1

Sc

@

@x
(u0Sc) = 0 (5.56)

The wave equation for the pressure is:

1

Sc

@

@x

µ
Sc
@p0

@x

¶
¡ 1

¹a2
@2p0

@t2
= 0 (5.57)

5.5.1. Waves in Tubes.

(a) Normal Modes for a Tube Closed at Both Ends

Results for a tube closed at both ends not only contain many ideas basic to general oscillations in chambers,
but also are widely useful for practical applications. For a tube closed by rigid walls, the boundary conditions
at the ends are that the velocity must vanish. The momentum equation (5.54) then states that acceleration and
therefore the pressure gradient must vanish at the ends for all time:

@p0

@x
= 0 x = 0; L; all t (5.58)

General linear motions within the tube can be constructed as superpositions of normal modes de¯ned in
general by two properties:

(i) sinusoidal variations in time

(ii) the motion at any point bears always a ¯xed phase relation with that at any other point in
the volume
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Those conditions imply here that the pressure can be expressed as

p0(x; t) = p̂(x)e¡i¹akt (5.59)

where k is the complex wavenumber, related in general to the complex frequency by the formula

¹ak = ! + i® (5.60)

Because there are no dissipative processes in this problem, ® = 0 so the wavenumber is real. Substitution of
(5.59) in (5.57) with S independent of x gives

d2p̂

dx2
+ k2p̂ = 0 (5.61)

A solution to (5.61) satisfying (5.58) at x = 0 is p̂ = A cos kx. To satisfy the condition at x = L, cos kL = 0.
Then k can assume only certain values kl, called characteristic or eigen values:

20

kl = l
¼

L
(l = 0; 1; 2; ¢ ¢ ¢ ) (5.62)

Corresponding to each kl is a characteristic function, or eigenfunction,

p̂l
¹p0
= Al cos(klx) (5.63)

For the problems we treat in this book, the motions represented by the kl, p̂l, and ûl are usually called normal
modes, ¹akl = !l being the normal or modal frequency, and p̂l, ûl are the mode shapes of pressure and velocity.
All of these terms are used for two- and three-dimensional motions as well.

A normal mode is characterized by its frequency and the spatial distributions, or `shapes' of all dependent
variables. The mode shape for the velocity is derived from the mode shape (5.63) by integrating the acoustic
momentum equation (5.55) written for ûl:

¡i¹aklûl = ¡1
¹½

dp̂l
dx

=
kl
¹½
¹plAl sin klx

Thus

ûl = i
¹pl
¹½¹a
Al sin klx (5.64)

or, written as the Mach number of the mode,

M̂l = i
1

°
Al sin klx (5.65)

(b) Normal Modes for a Tube Open at Both Ends

In this case, the pressure is assumed ¯xed at the ends, for example because the tube is immersed in a large

reservoir having constant pressure, and p0 = 0. For isentropic motions, ½
0

¹½ =
1
°
p0

¹½ so ½
0 = 1

¹a2 p
0 and the continuity

equation (5.54) is

@p0

@t
+
¹a2

¹½

@u0

@x
= 0 (5.66)

Hence if p0 is ¯xed, the velocity gradient must vanish at the ends. Set p0 = Ae¡i¹akt sin kx and substitute in (5.66)

i
¹a

¹p
kAe¡i¹akt sin kx = ¡¹a

2

¹½

@u0

@x

20Only for l ¸ 1 do we ¯nd wave modes. For l = 0, a qualitatively di®erent mode exists for which the pressure is uniform in the
volume but pulsates at a frequency well below that for the fundamental wave mode. The velocity is practically zero and the oscillator
is sustained by some sort of external action. A prosaic example is the low frequency sound one can create by blowing across the
narrow opening at the neck of a bottle. In this case the mode is called the Helmholtz mode and the bottle is behaving as a Helmholtz
resonator.
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The left-hand side vanishes (and hence @u0=@x = 0) at x = 0 for any k, but at x = L, we must have sin klL = 0.
Hence kl = (2l + 1)

¼
L and the normal mode shape and frequency are

p̂l
¹p
= Al sin(klx) ; kl = l

¼

L
(l = 1; 2; ¢ ¢ ¢ ) (5.67)

and the mode shape for the velocity is

ûl
¹a
= M̂l = i

1

°
Al cos klx (5.68)

(c) Normal Modes for a Tube Closed at One End and Open at the Other

Reasoning similar to the above leads in this case to the normal modes when the tube is closed at x = 0:

p̂l
¹p
= Al cos(klx) ;

³
kl = (2l + 1)

¼

2L

´
(l = 1; 2; ¢ ¢ ¢ )

ûl
a
= ¡i 1

°
Al sin(klx)

5.5.2. Normal Modes for Tubes Having Discontinuities of Cross-Sectional Area. Combustors having discontin-
uous area distributions are commonly used in solid propellant rockets and in various laboratory devices. Consider
the example sketched in Figure 5.3. The boundary conditions at the ends are:

x = 0 :
dp̂

dx
= 0

x = ¯L : p̂ = 0
(5.69) a,b

Figure 5.3. A Uniform Tube Having a Single Discontinuity.

Possible solutions in the regions to the left and right of the discontinuity are:

p̂

¹p
= A cos kx (0 · x · L)

p̂

¹p
= B sin k(¯L¡ x) (L < x · ¯L)

(5.70) a,b

Note that k = !=¹a is the same throughout the tube because the motion occurs everywhere at the same
frequency.

Completing the problem comes down to determining the conditions for matching the solutions. Two are
required:

(i) continuity of pressure:

lim
"!0

[p̂(L¡ ")¡ p̂(L+ ")] = 0
which gives

A cos kL = B sin(¯ ¡ 1)kL (5.71)
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(ii) continuity of acoustic mass °ow:
Integrate the wave equation (for harmonic motions) across the discontinuity,Z L+"

L¡"

·
d

dx
(Sc

dp̂

dx
+ k2Scp̂

¸
dx = 0

Because p̂ is continuous, this relation becomes

lim
"!0

"µ
Sc
dp̂

dx

¶
L+"

¡
µ
dp̂

dx

¶
L¡"

#
= 0

Thus, with ¹½ constant and dp̂
dx » û:

(¹½Scû)L+" ¡ (¹½Scû)L¡" (5.72)

After substituting the waveforms (5.70) a,b, and using (5.71) we ¯nd the transcendental equation for the
modal wavenumbers:

S1
S2
tan klL = cot kl(¯ ¡ 1)L (5.73)

This method of solving a problem with discontinuities is only approximate: a practical question is: how
large are the errors? To gain some idea of the errors incurred, tests at ambient temperature (`cold °ow tests')
were carried out by Mathis, Derr and Culick (1973) for the geometry of a T-burner used for measuring the
combustion response of burning solid propellants. Results are shown in Figure 5.4. The measured values of
both the frequencies and the mode shapes are surprisingly well-predicted by this theory. The principal reason
is that the in°uence of a discontinuity is con¯ned to a relatively small region near the change of area, but the
characteristics of the normal modes depend on the motion in the entire volume.

Figure 5.4. Comparison of Experimental and Theoretical Results for Normal Frequencies in a
T-Burner (Ambient Temperature)

5.6. Normal Acoustic Modes and Frequencies for a Chamber. We now consider a volume of any
shape enclosed by a rigid boundary and containing a uniform gas at rest. Unsteady small amplitude motions
therefore satisfy the linear wave equation (5.4) a,b and its boundary condition ((5.4) a,b)b requiring that the
velocity normal to the boundary vanish at all times. By this de¯nition given in Section 5.5.1, normal modes
are solutions to this problem which oscillate sinusoidally in time and have ¯xed phase relations throughout the
volume. We assume the form21 p0 = Ãe¡i¹akt. The formal problem is to ¯nd Ã satisfying the scalar wave equation,
also called the Helmholtz wave equation, with vanishing normal gradient at the surface:

r2Ã + k2Ã = 0
n̂ ¢ rÃ = 0 (5.74) a,b

21Consistent with the general character of this problem, we replace p̂ by Ã, introducing a common notation for normal modes.
The velocity potential © satis¯es the same pair of equations, a result re°ected by equation (5.31) which for sinusoidal motions means
that p0 and © are proportional: p0 = i¹ak¹½©.
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There are many well-written books covering this problem and its solution, for example Hildebrand (1952),
Morse and Feshbach (1952), and Morse and Ingard (1968). The simplest approach is based on the method of
separation of variables, applicable for closed form solutions in thirteen coordinate systems; see, e.g., Morse and
Feshbach (1952). In practical applications to combustors, only rectangular and circular cylindrical chambers are
important.

5.6.1. Normal Modes for Rectangular Chambers. The wave equation in Cartesian coordinates is

@2Ã

@x2
+
@2Ã

@y2
+
@2Ã

@z2
+ k2Ã = 0

and n̂ ¢ rÃ must vanish on the six °at surfaces each perpendicular to a coordinated axis, Figure 5.5. Applying
the method of separation of variables leads to a solution having the form

Ã = A cos(kxx) cos(kyy) cos(kzz) (5.75)

and

k2 = k2x + k
2
y + k

2
z (5.76)

y

x

z

0

b
2

− a
2

b
2

−

a
2

L

Figure 5.5. Rectangular Chamber

The boundary conditions must be satis¯ed:

@Ã

@x
= 0 x = 0; L

@Ã

@y
= 0 y = ¡a

2
;
a

2

@Ã

@z
= 0 z = ¡ b

2
;
b

2

(5.77) a,b,c

Reasoning similar to that given in Section 5.5.1 leads to the values of the wavenumbers

kx = l
¼

L

ky = m
¼

b

kz = n
¼

c

(5.78) a,b,c
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and the mode shapes are

Ãlmn = Almn cos
³
l
¼

L
x
´
cosm

¼

a

³
y +

a

2

´
cosn

¼

b

µ
z +

b

2

¶
(5.79)

The distributions of pressure therefore have the same form in all directions; of course the components (5.78) a,b,c
can assume any of the allowed values, and the frequency is given by (5.76), ! = ¹ak.

5.6.2. Normal Modes for a Circular Cylindrical Chamber. Let x be the polar axis (Figure 5.6) and the wave
equation in circular cylindrical coordinates is

1

r

@

@r

µ
r
@Ã

@r

¶
+
1

r2
@2Ã

@µ2
+
@2Ã

@x2
+ k2Ã = 0 (5.80)

Figure 5.6. Circular Cylindrical Coordinates

The boundary condition requires that n̂ ¢ rÃ vanish at the ends and on the lateral boundary:
@Ã

@x
= 0 x = 0; L

@Ã

@r
= 0 r = R

(5.81)

Application of the method of separation of variables leads to a solution of the form

Ã(r; x; µ; t) = A

½
cosnµ
sinnµ

¾
cos klzJm

³
·mn

r

R

´
(5.82)

To satisfy the boundary conditions, the values of kl are integral multiples of ¼=L as above and the ·mn are
the roots of the derivative of the Bessel function:

dJm(·mn)

dr
= 0 (5.83)

Figure 5.7 shows the lowest six modes in the transverse planes, and the identifying values of n and m. More
extended results are given in standard texts and collections of special functions.
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Figure 5.7. The First Six Transverse Modes in a Circular Cylinder
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6. LINEAR STABILITY OF COMBUSTOR DYNAMICS

All problems of unsteady motion in combustion systems can be divided into the two classes: linearized and
nonlinear. From the earliest discoveries of their transient behavior until the late 1950s `combustion instabilities'
implied small amplitude unsteady (and unwanted) motions growing out of a condition of linear instability. Even
with the expanding awareness that the nonlinear properties must be understood as well, the linear behavior
remains an essential part of understanding all aspects of combustion instabilities, including the consequences of
nonlinear processes.

The literature of linear combustion instabilities contains many papers dealing with special problems. There
seems often to be a tendency to regard the results as somehow disconnected. However, apparent di®erences arise
chie°y from the di®erences in the processes accounted for and in the choices of models for those processes. So
long as the problems are dominated by oscillating behavior in combustors, probably most, if not practically all
of the results can be obtained in equivalent forms by suitable applications of the methods explained here. That
statement is not as outrageous as it may seem, following as it does from the generality of the expansion procedures
and the method of averaging covered in Section 4.

6.1. Solution for the Problem of Linear Stability. By `solution' we mean here formulas for calculating
the amplitudes ´n(t) of modes retained in the expansion for the pressure ¯eld, p

0(r; t) = ¹p§´n(t)Ãn(r). The
amplitudes satisfy the oscillator wave equations (4.36)

d2´n
dt2

+ !2n´n = Fn + F
c
n (6.1)

where F cn stands for the generalized `force' associated with the exercise of control; and Fn is the spatial average
of that part (sometimes called the `projection' on the basis function Ãn) of the internal processes a®ecting the
motion of the nth oscillator, given by (4.32):

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
°fÃndS

¾
(6.2)

Here we ignore F cn because we are concerned only with the internal behavior of the system. In general, the Fn
contain contributions associated with the motions of oscillators other than the nth|i.e. the modes are coupled.
For analysis of linear stability we are justi¯ed in ignoring that coupling, for reasons given by Culick (1997). Each
Fn is therefore a linear function of the amplitude and velocity of the oscillator, having the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(6.3)

where the F ´n and F
_́
n are constants, depending only on the mode.

With these assumptions, the oscillator equations (6.1) are the uncoupled set

d2´n
dt2

¡ F _́
n

d´n
dt

+
¡
!2n ¡ F _́

n

¢
´n = 0 (6.4)

Because the equations are uncoupled, the normal modes Ãn for the corresponding classical acoustic problem are
also the normal modes for the linear problem of combustor dynamics. The general problem of determining linear
stability has therefore come down to the problem of determining the stability of the normal modes. In the usual
fashion we assume sinusoidal time dependence with complex frequency:

´n(t) = ^́ne
i−t (6.5)

Equation ((5.4) a,b) gives the quadratic equation for −n:

−2 ¡ iF _́
n−+

¡
!2n ¡ F ´n

¢
= 0 (6.6)

with solution

− = i
1

2
F _n
n + !n

s
1¡ 1

!2n

·
F ´n +

1

4

³
F _́
n

´2¸
(6.7)
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where we take the (+) sign on the radical to give a positive real frequency. Hence the amplitudes are

´n(t) = e
1
2F

_́
n te¡i!n

p
1¡³2nt (6.8)

and

³n =
1

!n

r
F ´n +

1

4

³
F _́
n

´2
(6.9)

The nth mode is stable of

F _́
n < 0 (6.10)

That is, the coe±cient of _́n in the expression for Fn must be positive for the n
th mode to be stable.

Now according to the methods of Fourier analysis, an arbitrary disturbance at some initial time (say t = 0)
in the chamber can be synthesized of the normal modes. The time-evolution of the disturbance is therefore
determined by the ´n(t). In particular, an arbitrary disturbance in a combustor is stable if (and only if) all of
the normal modes are stable and we arrive at the general result for the linear stability of a combustor:

(i) Write the linearized function for the force acting on the nth oscillator (spatially averaged
acoustic mode) in the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(ii) Then any initial disturbance in a combustor is stable if and only if all the F _́
n are negative:

Linear Stability () F _́
n < 0 (all n)

The preceding calculation and its conclusion, illustrate further a point ¯rst made in Section 3. We have found
a means of computing the linear stability of a combustor without knowing the linear motions themselves. The
complex frequency (6.7) is in fact the frequency for the actual linear modes including the in°uences of all the
processes accounted for. But calculation of the F ´n and F

_́
n with the formula (6.2) requires knowledge only of

the unperturbed normal modes|their frequencies !n and shapes Ãn(r). The formal statement of this property
is that the eigenvalues (−n) to any order in the relevant expansion parameter (here ¹Mr := ¹) can be computed
knowing the eigenfunctions (Ãn) only to one less order. The eigenvalues −n are here given to ¯rst order in the
Mach number of the average °ow but only the unperturbed classical eigenfunctions Ãn are required. This is the
basic characteristic of the expansion procedures with spatial averaging that makes the method devised here so
useful in practice.

6.2. An Alternative Calculation of Linear Stability. An equivalent calculation of the result for linear
stability makes direct use of the formula for the wavenumber. Write

´n = ^́ne
¡i¹akt ; Fn = F̂ne

¡i¹akt

and substitute in (6.1) with F cn ignored to ¯nd

(¹ak)2 = (¹akn)
2 +

1

^́n

³
F̂ (r)n + iF̂ (i)n

´
(6.11)

With ¹ak = ! + i®, this formula is

!2 + i(2®!)¡ ®2 = !2n +
1

^́n

³
F̂ (r)n + iF̂ (i)n

´
where ( )(r) and ( )(i) stand for real and imaginary parts. Because ® and F̂n are of ¯rst order in the expansion
parameter and terms of higher order must be dropped22, we ignore ®2 with respect to !2. Then the real and
imaginary parts of the last equation give

!2 = !2n +
1

^́n
F̂ (r)n

® = ¡ 1

2!n
F̂ (i)n

22Recall the remarks in Section 4.
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where ! has been set equal to !n in the right-hand sides to ensure that higher order terms are not retained.
Now take the square root of the ¯rst equation and again drop higher order terms to ¯nd

! = !n ¡ 1

2!n

F̂
(r)
n

^́n

® = ¡ 1

2!n

F̂
(i)
n

^́n

(6.12) a,b

The system is unstable if F̂
(i)
n is negative. This condition is essentially a generalized form of Rayleigh's criteria

discussed further in Section 6.4.

After higher order terms are dropped from (6.7), the real and imaginary parts of ! are

! = !n ¡ 1

2!n
F ´n

® =
1

2
F _́
n

(6.14) a,b

Comparison of (6.12) a,b and 5.14 gives the connections between the two representations of the forcing function23:

F ´n =
F̂
(r)
n

^́n

F _́
n = ¡

1

!n

F̂
(i)
n

^́n

(6.15) a,b

Generally Fn will contain several processes, each of which will depend linearly on ´n and
d´n
dt and appears

additively in Fn. Hence formulas corresponding to (6.15) a,b apply to each of the individual processes. They are
often useful, if only for checking correctness, in detailed calculations.

6.3. An Example: Linear Stability with Distributed Sources of Heat and Motion of the Bound-
ary. As a ¯rst approximation to problems of combustion instabilities it is useful to ignore all processes involving
interactions between the unsteady and steady ¯elds, and focus attention on the two generic causes of instabili-
ties: time-dependent energy addition and motions of the boundary. With suitable interpretation the second may
represent the in°uence of unsteady combustion of a solid propellant. Then in dimensional variables the linearized
pressure and momentum equations ((3.46) a-e)d and ((3.46) a-e)b, and the boundary condition (3.57) on the
pressure °uctuations are

@p0

@t
+ °¹pr ¢ u0 = R

Cv
_Q0 (6.12)

¹½
@u0

@t
+rp0 = 0 (6.13)

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (6.14)

Now form the wave equation as in Section 3.4, so the problem is governed by the two equations

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(6.19) a,b

where

h = ¡ 1

¹a2
R

Cv

@ _Q0

@t

f = ¡¹½@u
0

@t
¢ n̂

(6.20) a,b

23The (¡) sign in (6.15) a,b arises from the (¡) sign in the exponential time dependence.
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The expansion procedure and application of spatial averaging leads to the explicit oscillator equations (4.36):

d2´n
dt2

+ !2n´n = ¡
¹a2

¹pE2n

(Z "
¡ 1

¹a2
R

Cv

@ _Q0

@t

#
ÃndV +

ZZ ·
¡¹½@u

0

@t
¢ n̂
¸
ÃndS

)
(6.21)

0 L

Q

Figure 6.1. A Tube with Distributed Heat Addition and an Oscillating Piston to Drive Waves

As a simple example, consider the one-dimensional problem of waves excited in a tube ¯tted with a piston,
Figure 6.1, and with distributed heat addition provided by an electrically heated coil. Only longitudinal modes
are accounted for, and

Ãn = cos(knx) ; kn = n
¼

L
; E2n =

1

2
ScL (6.21)

where Sc = ¼R
2 is the cross-section area of the tube. We ignore any average motion in the tube, and suppose

that the average thermodynamic properties are maintained constant and uniform by suitable steady heat losses
through the walls of the tube. The heat addition and motion of the piston are sinusoidal, having phases ÁQ and
Án with respect to pressure oscillations:

_Q0 =
¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt¡ÁQ)

u0p ¢ n̂ = jûpj e¡i(¹akt¡Áp)
(6.22) a,b

Hence for use in h and f :

@ _Q0

@t
= ¡i¹ak

¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt¡ÁQ)

@

@t

¡
u0p ¢ n̂

¢
= ¡i¹ak jûpj e¡i(¹akt¡Áu)

(6.23) a,b

With ´n = ^́ne
i¹akt, substitution in the oscillator equations (6.21) leads to£¡(¹ak)2 + !2n¤ ^́n = ¡ ¹a2

¹pE2n

½
¡ 1

¹a2
R

Cv
(¡i¹ak)

Z
cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
eiÁQdV

+i¹½¹ak

ZZ
° cos(knx)jûpjeiÁu

¾
After some rearrangement, and setting ¹ak = ! ¡ i®, we ¯nd

(! + i®)2 = !2n ¡ i(! + i®)
¹a2

¹p( 12ScL)

8<: 1

¹a2
R

Cv
Sc

Z L

0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

eiÁQdx

¡¹½Sc jûpj
^́n
eiÁp

¾
Because j _̂Qj and jûpj are small perturbations we can write this equation to ¯rst order in small quantities:

!2 ¡ i(2®!) = !2n ¡ i!n
2

¹pL

R

Cv

Z L

0

24cos(knx)
¯̄̄
_̂Q(x)

¯̄̄
^́n

eiÁpdx+ i!n
2°

L

jûpj
^́n
eiÁu

35 dx
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Take the real and imaginary parts to ¯nd

!2 = !2n +
2!n
¹pL

µ
R

Cv

¶Z L

0

24cos(knx)
¯̄̄
_̂Q(x)

¯̄̄
^́n

sinÁQdx¡ 2°!n
L

jûpj
^́n

sinÁu

35 dx
® =

1

¹pL

R

Cv

Z L

0

24cos(knx)
¯̄̄
_̂Q(x)

¯̄̄
^́n

cosÁQdx¡ °

L

jûpj
^́n

cosÁu

35 dx
(6.24) a,b

Internal feedback, and hence a condition for instability, exists of either or both j _̂Qj and jûpj depend on the
°uctuating pressure (or velocity). For example, set

j _̂Qj = q0 ^́nÃn = q0 ^́n cos knx
jûpj = u0 ^́n

(6.25) a,b

and (6.24) a,b becomes
!2 = !2n + 2!n (Aq0 sinÁq ¡Bu0 sinÁu)

where

A =
1

2¹p

R

Cv
; B =

°

L
(6.26)

To ¯rst order in small quantities we ¯nd the results for the frequency and decay or growth constant:

! = !n +Aq0 sinÁQ ¡Bu0 sinÁu
® = Aq0 cosÁQ ¡Bu0 cosÁu (6.27) a,b

Remarks:

(i) the nth mode is unstable if Aq0 cosÁQ > Bu0 cosÁu

(ii) the ¯rst term in ® is an example of Rayleigh's criterion discussed in Section 6.3:

a) if 0 · Áu · ¼
2 then a necessary condition for instability is 0 · ÁQ · ¼

2 .

b) instability of the nth mode is encouraged if j _̂Q(x)j cos knx is larger,
i.e. if the heat addition is greater where the mode shape of the pressure.

It is important also to notice that due to the spatial averaging, one cannot distinguish the ultimate e®ects
of volumetric and surface processes. There is an equivalence of the in°uences of the various processes, their
importance in respect to position within the chamber being dominated by their location with respect to the mode
shapes. That characteristic has far-reaching consequences.

6.4. Rayleigh's Criterion and Linear Stability. As part of his research on the excitation of acoustic
waves by heat addition in chambers, Lord Rayleigh (1878, 1945) formulated the following explanation for the
production of tones in a Rijke tube:

\If heat be periodically communicated to, and abstracted from, a mass of air vibrating (for example)
in a cylinder bounded by a piston, the e®ect produced will depend upon the phase of the vibration
at which the transfer of heat takes place. If heat be given to the air at the moment of greatest
condensation, or be taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or abstracted at the
moment of greatest condensation, the vibration is discouraged."

That paragraph has become probably the most widely cited explanation for the presence of combustion instabilities
generally. For easy reference, the explanation has long been referred to as \Rayleigh's Criterion."

It is important to realize that Rayleigh addressed only the conditions under which unsteady heat addition
`encourages' oscillations, i.e. is a destablilizing in°uence. Other processes, stabilizing or destabilizing are neither
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excluded nor included, and there is certainly no implication that satisfaction of the criterion is either a necessary
or a su±cient condition for instability to exist. Several published examples exist of quantitative realizations of
the criterion (Putnam 1971; Chu 1956; Zinn 1986; Culick 1987, 1992). The purpose of this section is to establish
a generalized form of Rayleigh's Criterion by using the analysis based on spatial averaging.

The main idea is that a positive change of the time-averaged energy of a modal oscillator in a cycle of
oscillation is exactly equivalent to the principle of linear instability, that the growth constant should be positive
for a motion to be unstable. To establish the connection we use the oscillator equations,

d2´n
dt2

+ !2n´n = Fn (6.27)

The instantaneous energy24 of the nth oscillator is

En =
1

2

¡
_́2n + !

2
n´

2
n

¢
(6.28)

and the change of energy in one cycle is the integral over one period of the rate at which work is done by the
force Fn:

¢En =

Z t+¿n

t

Fn(t
0) _́n(t0)dt0 (6.29)

Under the integral, Fn and _́n must be real quantities: here we use the real parts of both functions,

´n = ^́ne
¡i¹akt = j^́nje¡i¹akt

Fn = F̂ne
¡i¹akt = jF̂nje¡i(¹akt+ÁF ) = jF̂nj (cosÁF ¡ i sinÁF ) e¡i¹akt

(6.31) a,b

We measure all phases with respect to the pressure, so ^́n is real and, being the maximum amplitude, is positive.
Substitution in the oscillator equations gives

k2 =
1

¹a2

Ã
!2n ¡

F̂n
^́n

!
of which the real and imaginary parts are to ¯rst order in small quantities:

!2 = !2n ¡Re
Ã
F̂n
^́n

!
= !2n ¡

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ cosÁF

®n =
1

2!n
Im

Ã
F̂n
^́n

!
=
¡1
2!n

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ sinÁF

(6.32)a,b

Also for use in (6.29) we have

_́n = i¹akj^́nje¡i¹akt = ¹akj^́nje¡i(¹akt+¼
2 ) ¼ !nj^́nje¡i(!nt+¼

2 )

so

Re( _́n) = !nj^́nj cos
³
!nt+

¼

2

´
= ¡!nj^́nj sin!nt (6.33)

The real part of Fn is

Re(Fn) = jF̂nj cos (!nt+ ÁF ) = jF̂nj fcos!nt cosÁF ¡ sin!nt sinÁF g (6.34)

Hence the right-hand side of (6.29) is

¢En =

Z t+¿n

t

Re(Fn)Re(´n)dt
0 = !jF̂nj

Z t+¿n

t

½
sin2 !nt

0 sinÁF ¡ 1
2
sin 2!nt

0 cosÁF

¾
dt0

= !jF̂njj^́nj¿n
2
sinÁF

Substitution of (6.32)a,b leads to the formula

¢En = 2¼®n!nj^́nj2 (6.35)

which establishes the desired connection between Rayleigh's criterion and linear stability:

24En is not the energy of the nth acoustic mode, which is given by the integral of (5.33) over the volume of the chamber.
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Remarks:

(i) Positive ®n (the system is linearly unstable) implies that the average energy of the oscillator
increases, and vice-versa.

(ii) Rayleigh's original criterion is equivalent to the principle of linear instability if only heat
exchange is accounted for and is neither a necessary nor a su±cient condition for existence
of a combustion instability.

(iii) The extended form (6.35) of Rayleigh's criterion is exactly equivalent to the principle of linear
instability.

Putnam (1971) has made the widest use of Rayleigh's Criterion in practical situations. His book and papers
give many examples of applying the Criterion as an aid to making changes of design to avoid oscillations generated
by heat release, particularly in power generating and heating systems.

In the past ¯fteen years many groups have been making direct observations on laboratory systems to check
the validity of the Criterion's implications. The key step is based on the assumption that radiation by certain
intermediate species in hydrocarbon reactions (CH and OH are the most common indenti¯ers) can be interpreted
as a measure of the rate of chemical reactions taking place and hence of the rate at which energy is released.
Simultaneous measurement we made of the spatial distribution of radiation in a system, and of the pressure
oscillations, the results then allow at least a qualitative assessment of the extent to which the oscillations are
being driven by the energy released in the combustion ¯eld, or whether other mechanisms may be active.

It seems that the ¯rst report of that sort of e®ort appeared in a Ph.D. thesis (Sterling, 1987; Sterling and
Zukoski, 1991). Figure 6.2 is a sketch of the dump combustor used as the test device, and Figure 6.3 shows the
main result.

VPremixed
CH   / Air4 Exhaust  to

Atmosphere

Figure 6.2. The Caltech Dump Combustor (Sterling 1985)

6.5. Explicit Formulas For Linear Stability. The term `stability of motions' has several interpretations
for °ows in combustion chambers, including:

(i) the stability of laminar average °ow when viscous and inertial properties of the medium
dominate, leading to turbulence, a ¯eld of distributed vorticity if the steady °ow is unstable;

(ii) the stability of shear layers, commonly producing large scale vortex motions when a shear
layer is unstable;

(iii) the stability of laminar °ame fronts, responsible for one source of turbulent combustion when
fronts are unstable;

(iv) the stability of small disturbances which, when the compressibility and inertia of the medium
dominate, can develop into acoustic waves.

In terms of the modes of motion mentioned in Section 3.1 and discussed further in Section 3.3, the phenomena
(i){(iii) are classi¯ed as waves of vorticity and the fourth comprises acoustic waves. Here we are concerned only
with the stability of acoustic waves. The results are very general, accommodating all relevant processes and
applicable, in principle, to any combustion chamber. Eventually the obstacles to successful applications are
associated almost entirely with problems of modeling. In the ¯rst instance, the formal results given here establish
explicitly what modeling is required.

6.5.1. Linear Stability in Three Dimensions. The formulas (6.14) a,b are general, restricted only by the
approximations used in formulating the analytical framework. Hence the problem of obtaining results speci¯c to
any given problem comes down to ¯nding explicit forms for F ´n and F

_́
n , i.e. evaluating the integrals de¯ning Fn,
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Figure 6.3. Experimental Con¯rmation of Rayleigh's Criteria (Sterling and Zukoski, 1991)

equation (6.2). The functions h and f are given by (4.72) and (4.73) to second order in the °uctuations. Here we
need only the linear parts, terms of order ¹". With ¹ and " absorbed in the de¯nitions of the variables, we have

h = ¡¹½r ¢ ¡ ¹M ¢ rM0 +M0 ¢ r ¹M¢¡ 1

¹a2
@

@t

¡
¹M ¢ rp0 + °p0r ¢ ¹M¢

+

·
1

¹½
r ¢

µ
1

¹½
F0
¶
¡ 1

¹a2
@P 0

@t

¸
¹"

(6.36)

f = ¹½

·
@M0

@t
¢ n̂
¸
¹"

+ ¹½n̂ ¢ ¡ ¹M ¢ rM0 +M0 ¢ r ¹M¢+ [n̂ ¢ F0]¹" (6.37)

where the subscript ¹" means that the quantity in expanded to include only terms of ¯rst order in the mean °ow
and the °uctuations, i.e. terms O( ¹MrM

0
r).

Substitution of (6.36) and (6.37) and some rearrangement leads to the resultZ
ĥÃndV +

ZZ
°fÃndS = ¹½k2n
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´
ÃndV

¡ ¹½
Z ³
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Z
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£
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Z
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+ ¹p¹akn

ZZ
°ÃnM̂ ¢ n̂dS

(6.38)
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Note that we have removed the exponential time factor for linear harmonic motions and (6.38) contains the

amplitudes of °uctuations, denoted by ^( ). Two remarks are important:

(i) the mean °ow ¯eld may be rotational (r£ ¹M6= 0) and sources are accommodated (r¢ ¹M6= 0).
(ii) owing to the ordinary procedure discussed in Section 3, the substitutions of classical acoustic

mode shapes are required in the right-hand side:

p̂ = ¹p^́nÃn ; M̂ =
i

°k2n
_́̂nrÃn (6.39)

where _́̂n = i¹akn´n.

Eventually the complex wavenumber, (6.11), is

k2 = k2n +
¹a2

¹pE2n

(
i¹p¹akn

ZZ
°
Ã
M̂

^́n
+
1

°
¹M°n

!
¢ n̂°ndS

+ i(° ¡ 1)kn
¹a
¹p

Z ¡r ¢ ¹M¢Ã2ndV ¡ ikn¹a
Z
P̂

^́n
ÃndV

¡
Z
F̂

^́n
¢ rÃndV

) (6.40)

It is important to understand that in the result unsteady gasdynamics (acoustics) and interactions between
the acoustics and the mean °ow are accounted for `exactly' to O( ¹Mr).

The real and imaginary parts of (6.40), written symbolically as equations (6.12) a,b and (6.14) a,b are sums
of contributions from the various processes accounted for. For example, the formula for the growth constant
appears in the form

® = (®)combustion + (®)mean flow=acoustics + (®)nozzle + ¢ ¢ ¢
Similar results can be derived for the case when the one-dimensional approximation is used. The required basis
for the calculations is given by Culick (1998). The results for the frequency and growth constant are:

! = !n +
¹a2
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(6.41)
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(6.42)

Two remarks on interpretation

(i) the ¯rst two terms in the formula for ® represent the dynamical response of the enclosing
surface and the net e®ect of linear interactions between the acoustic ¯eld and the mean °ow.

(ii) the last term represents a dissipative process commonly called `°ow turning' due to inelastic
acceleration of the incoming °ow, initially normal to the surface, to the local axial velocity
parallel to the surface. This process generates unsteady vorticity at the surface; the result
shown here does not capture the entire contribution. See Flandro (1995) and Mulhotra
(2001).
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These results for linear stability have been applied extensively to problems of combustion instabilities in solid
propellant rockets. Their validity has long been con¯rmed. However, their accuracy depends entirely on the
accuracy of modeling processes rather than the gasdynamics shown explicitly in (6.40){(6.42).

Due to the large uncertainties associated with modeling some processes, it is di±cult|in fact impossible at
this time|to make an entirely satisfactory comparison between theoretical results and measurements. Hence
the best way to check theory is to compare results obtained here with results of numerical simulations, all for
the same problem. Even this procedure is imperfect because di®erent approximations must be made in the two
approaches|it is impossible to solve the `same' problem numerically and with the analysis given here.

Results of an example for a solid propellant rocket are shown in Figures 6.4{6.6. The calculations were carried
out for nonlinear behavior. Figure 6.4 shows the development of the unstable motion into a stable limit cycle
and Figure 6.5 is a comparison of the spectra of the waveforms in the limit cycle. The approximate analysis
can be carried out only for a ¯nite number of modes. As a consequence, although the frequencies are accurately
predicted, the amplitudes have greater errors for the higher modes. Figure 6.6 shows one e®ect of truncating the
modal expansion. For this example the e®ect is not large|the two-mode approximation seems quite adequate.
That is not always true, a matter discussed in the following Section.

(a) Approximate Analysis (b) Numerical Simulation

Figure 6.4. Growth of Unstable Motions According to (a) the Approximate Analysis; and (b)
a Numerical Simulation
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(a)

(b)

Figure 6.5. Comparison of the Spectra for the Waveforms in Figure 6.4

Figure 6.6. E®ect of Truncation in the Waveforms
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7. NONLINEAR BEHAVIOR

It is linear behavior, especially linear stability, that is most easily understood and therefore has dominated
discussions of combustion instabilities. Almost no attention has been paid to nonlinear behavior in works on
control of combustion instabilities. One justi¯cation for that de¯ciency has been the view that if control of the
oscillations works properly, it should stop the growth before the amplitude reaches a large value. There are several
reasons why that reasoning is °awed:

² if the growth rates are unusually large the control system may not have a su±ciently large
bandwidth to be e®ective;

² because combustion systems are intrinsically nonlinear design of a control system based only
on linear behavior may produce a control system far from optimal;

² linear control demands actuation at the frequency of the oscillation to be controlled, while
nonlinear control of particular types are e®ective at lower frequencies; an example is described
in Section 7.

² observed nonlinear behavior contains much information about properties of the system in
question and in the interests of understanding should not be ignored.

Existing examples of controlling combustion instabilities have almost totally ignored issues of nonlinear be-
havior. In no demonstration, either in the laboratory or full-scale, have the amplitudes of the oscillations been
predicted or interpreted either before or after control has been exercised. Hence nothing has been learned about
why the initially unstable motions reach the amplitudes they did, or, why the control system a®ected them in the
observed way. In fact few attempts exist to determine quantitatively the stability of motions. Hence the subject
of controlling the dynamics of combustion systems has largely been a matter of exercising the principles of control
with little attention paid to the characteristics of the systems (`plants') being controlled. It seems that following
this strategy is likely not the most fruitful way of achieving meaningful progress. Especially, this is not a sound
approach to developing the basis for designing control systems. The current state of the art is that feedback
control is designed and applied in ad hoc fashion for systems already built and exhibiting instabilities.

A central concern of a controls designer is construction of a `reduced order' model of the system. What
that really means in the present context is the need to convert the partial di®erential equations of conservation
developed in Section 3, to a ¯nite system of ordinary di®erential equations. The analysis developed in Section 3 and
4 accomplishes exactly that purpose. It is not the only approach possible (e.g. proper orthogonal decomposition
has been examined brie°y) but the method of modal expansion and spatial averaging has many favorable properties
and has been proven to work well.

The main purposes of this section are to quote a few results displaying some aspects of the nonlinear behavior
arising from gasdynamics; and to illustrate some consequences of truncating the modal expansion, that is, what
might be the consequences of reducing the order of the model. Another important issue we will examine brie°y
is the application of time-averaging. As the calculations in Section 4 showed, the great advantage of time-
averaging is that it replaces N second order oscillator equation by 2N ¯rst order equations. That transformation
enormously reduces the cost of obtaining solutions, aids theoretical work, and provides a simpli¯ed representation
for application of feedback control. But as for truncation, the question arises: How accurate are the results and
what are the limits of the validity of time-averaging?

Only the nonlinearities due to gasdynamics are treated in this section. The results must be viewed with
that caveat, particularly because the forms of the nonlinearities are very special, if only because the dominant
coupling acts to cause energy to °ow from low to high frequency waves, the tendency which produces the familiar
steepening of compressive disturbances into shock waves.

7.1. The Two-Mode Approximation. This is the simplest class of problems for which nonlinear mode
coupling is accommodated. Each mode is characterized by two constants: ® (energy gain or loss) and µ (frequency
shift). The energy gain or loss may be nonlinear|that is, ® could in principle depend on amplitude|but here
both ® and µ are taken to be constant, characterizing entirely the linear processes. As a result of several works
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in the past few years, the two mode approximation is quite well understood (Awad and Culick, 1986; Paparizos
and Culick, 1989; Yang and Culick 1990; Jahnke and Culick, 1994; Culick, 1994).

Figure 7.1. Energy Flow in the Two Mode Approximation

Only gasdynamic nonlinearities to second order are accounted for here. Their special form allows the conve-
nient closed form solutions to the time-averaged equations, ¯rst found by Awad (1983). The results provide much
basic understanding which is applicable to more complicated nonlinear problems. For example, contrary to one's
expectation based on the behavior of shock waves, nonlinear behavior in the present context need not involve
large amplitudes, and the pressure oscillation may appear to be a clean sinusoid, free of signi¯cant harmonic
content. The basic reason is that here the two-mode system both gains and loses energy; each interaction with
the environment is necessary. In the absence of the nonlinear modal coupling, or some other linear process, limit
cycles cannot exist. Moreover, both stable and unstable limit cycles exist.

Truncation of the modal expansion to two modes introduces errors because the °ow of energy to higher modes
is blocked. The amplitude of the highest mode is therefore greater than the correct value in order to provide the
higher linear rate of energy loss required to sustain a limit cycle. The example in Section 6.5.1 shows this e®ect.

It's an interesting feature of the two-mode approximation that nonlinear instability to stable limit cycles
seems not to exist. Although no rigorous proof exists, experience with many examples has shown that conclusion
to be quite generally true if only the acoustic (gasdynamics) nonlinearities are accounted for. `Triggering' or
pulsing to stable limit cycles does occur for special forms of nonlinear energy gain from the environment (i.e.
extinction from the mean °ow or supply from combustion processes).

If we ignore linear mode coupling and account for acoustic nonlinearities to second order, the oscillator
equations can be put in the form

d2´n
dt2

+ !2n´n = ®n _́n + µn´n ¡
1X
i=1

1X
j=1

fAnij _́i _́j +Bnij´i´jg+ FNLn (7.1)

where FNLn represents other nonlinear contributions. The coe±cients Anij , Bnij are de¯ned as integrals involving
the basis functions Ãnij . Hence their values are ¯xed primarily by the geometry of the chamber in question.
See Culick (1976) for additional details of the derivation of (7.1). It is extremely important that the nonlinear
gasdynamic terms involve no cross-products _́i´j and also (not obvious here) no `self-coupling', terms proportional
to _́2n or ´

2
n. Those properties are the formal reasons that nonlinear instabilities do not exist if only these

nonlinearities are included.

Equation (7.1) simplify considerably for longitudinal modes. Due to orthogonality and special properties of
the cos knz, the double sum becomes a single sum and (7.1) can be put in the form:

d2´n
dt2

+ !2n´n = ®n _́n + µn´n ¡
1X
i=1

h
C
(1)
ni _́i _́n¡i +D

(1)
ni ´i´n¡i

i
¡

1X
i=1

h
C
(2)
ni _́i _́n+i +D

(2)
ni ´i´n+i

i
+ FNLn

(7.2)
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The time-averaged forms of (7.2) are

dAn
dt

= ®nAn + µnBn +
n¯

2

iX
[Ai(An¡i ¡Ai¡n ¡Ai+n)¡Bi(Bn¡i ¡Bi¡n ¡Bi+n)]

dBn
dt

= ¡µnAn + ®nBn + n¯
2

iX
[Ai(Bn¡i ¡Bi¡n ¡Bi+n)¡Bi(An¡i ¡Ai¡n ¡Ai+n)]

(7.3) a,b

where as in Section 3, ´n = An cos!nt + Bn sin!nt. For longitudinal modes, the frequencies are all integral
multiples of the fundamental, a property that is crucial to the forms of (7.3) a,b. For example, for transverse
modes in a cylindrical chamber, the nonlinear terms contain factors representing modulation.

For two modes, the four ¯rst order equations are

dA1
dt

= ®1A1 + µ1B1 ¡ ¯(A1A2 ¡B1B2)
dB1
dt

= ®1B1 + µ1A1 ¡ ¯(B1A2 ¡A1B2)
dA2
dt

= ®2A2 + µ2B2 ¡ ¯(A21 ¡B21)
dB2
dt

= ®2B2 + µ2A2 ¡ 2¯B1A1

(7.4) a,b,c,d

The great advantage of this system of equations is that some useful exact results can be found. One way to ¯nd
them is to change independent variables to the amplitude and phases (¡n; Án) of the two modes by writing

´1(t) = ¡1(t) sin(!1t+ Á1)

´2(t) = ¡2(t) sin(2!1t+ Á2)

where ¡n =
p
A2n +B

2
n. The governing equations for ¡1;¡2 and the e®ective relative phase Ã = 2Á1 ¡ Á2 are

d¡1
dt

= ®1¡1 ¡ ¯¡1¡2 cosÃ
d¡2
dt

= ®2¡2 ¡ ¯¡21 cosÃ
dÃ

dt
= (µ1 ¡ 2µ1) + ¯(2¡1 ¡ ¡

2
1

2
sinÃ

(7.5) a,b,c

where

¯ =
µ2 ¡ 2µ1
2®1®2

(7.6)

The problem of linear stability is solved directly:

®1; ®2 < 0() small amplitude motions are stable (7.7)

Nonlinear behavior in general poses two basic questions:

(i) What are the conditions for existence of limit cycles?
(ii) What are the conditions that the limit cycles are stable?

Stability of a limit cycle of course is a matter entirely separate from the linear stability of small amplitude
motions. We are concerned here with a system executing a steady limit cycle. If the limit cycle in stable, then if
slightly disturbed, the motion will eventually return to its initial form

(a) Existence of Limit Cycles

In this time-averaged formulation, existence of limit cycles corresponds to existence of stationary or equilib-
rium points of the system (7.5) a,b,c:

d¡

dt
=
d¡2
dt

=
dÃ

dt
= 0() transcendental algebraic equations
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The solutions are

¡10 =
1

K

p
¡®1®2(1 + ¯2)

¡20 =
1

K

q
®21(1 + ¯

2)

Ão = tan
¡1(¡¯)

(7.8) a,b,c

where

K =
° + 1

2°
!1 (7.9)

For ¡10 to be real, ¡®1®2 must be positive, implying that the constants ®1; ®2 must have opposite signs. The
physical interpretation is that if the ¯rst mode is unstable, for example, ® > 0, then the second mode must be
stable (®2 < 0): the rate of energy °ow into the ¯rst mode must equal the rate of loss from the second mode in
order that the amplitudes be constant in time. The transfer rate upwards due to coupling must have the same
value. Similar reasoning explains the care when the second grade is unstable, requiring that the ¯rst mode to be
stable.

(b) Stability of Limit Cycles

To determine the stability of the limit cycles, the variables are written as ¡i = ¡i0 + ¡
0
i; Ã = Ão + Ã

0 and
substituted in the governing equations (7.5) a,b,c. The linearized equations for the disturbances are then solved
for characteristic value ¸ in the assumed forms ¡0i = ¡

0
i0e

¸t; ¢ ¢ ¢ . For stability, an initial disturbance must decay.
Applying that requirement produces regions of stability in the plane of the parameters ¯o = (µ2¡2µ1)2=(®2+2®1)2
and ®2=®1, shown in Figure 7.2

Figure 7.2. Regions of Stability for Two Modes, Time-Averaged Equations

There is presently no basis for understanding why stable limit cycles occur only for the special ranges of
parameters shown in Figure 7.2. Moreover, it is impossible at this stage to understand the extent to which the
shapes of the regions of stability depend on the use of time-averaged equations and on truncation to two modes.
It is important for both practical and theoretical reasons to assess and quantify as far as possible the consequences
of time-averaging and truncation. Considerable progress has been made in that direction by using a continuation
method to solve the systems of oscillator equations. Some results are discussed in the following section.
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Here it is useful to examine several special cases. Figure 7.3 shows that if the parameters are chosen so that
the operating point lies with the range for stable limit cycles and the ¯rst mode is unstable, truncation may have
relatively small e®ects. On the other hand, if the limit cycle is unstable within the two-mode approximation with
an unstable ¯rst mode, it may become stable (with the same values of ®1; ®2; µ1; µ2) if more stable modes are
accounted for.

Figure 7.3. E®ects of Truncation for a Stable Limit Cycle/First Mode Unstable

Figure 7.4. Development of a Stable Limit Cycle when the Second Mode is Unstable

Figure 7.4 is interesting for a quite di®erent reason. In this case the second mode is unstable, and the motion
evolves to a stable limit cycle. However, unlike the example in Figure 7.3, the amplitudes do not grow smoothly
and monotonically to their values in the limit cycle. Their erratic behavior is due to the fact that with the second
mode unstable, energy must °ow from high frequency to low frequency. That is contrary to the direction of °ow
imposed naturally by the °uid mechanics (of the steepening of a compressive disturbance into a shock wave). The
con°ict between the natural action of the nonlinear coupling on the one hand and the °ow of energy imposed by
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energy exchange with the environment causes the amplitudes of the two modes to wander during the transient
phase before ¯nally reaching their ultimate values.

7.2. Application of a Continuation Method. Much of the work during the past decade at Caltech on
chamber dynamics has been directed to understanding the extent to which nonlinear behavior can be explained on
the basis of nonlinear gasdynamics. The reasoning is that ¯rst we know the model of gasdynamics|the Navier-
Stokes equations for compressible °ow|so we can do accurate analysis; and second, those features that cannot
be explained must be due to other causes so, by elimination we have some guidelines for what we should seek in
other processes. Experience has shown that `other processes' is this context most probably means combustion.

To carry out this program with numerical simulations|after all, few exact results exist|would be a formi-
dable task because of the number of characteristic parameters. The parameter space comprises those de¯ning
the geometry of a chamber and two parameters (®n; µn) characterizing linear behavior of each mode. The e®ect
required to search the parameter space is much reduced by applying a continuation method. The procedure is
an e±cient system means of locating values of parameters for which the dynamical behavior su®ers a qualitative
change, i.e. bifurcation points. The simplest|almost trivial|example is the Hopf bifurcation point which arises
when for a stable system one of the values ®n changes from a negative to a positive value; the system becomes
linearly unstable and under suitable conditions the motion develops into a stable limit cycle. In fact, linear
instability is not always such a simple matter. We have found cases with special sorts of nonlinear processes that
a Hopf bifurcation may occur when the critical value of the critical ®n is non-zero.

The essential idea of a continuation method applied to limit cycles is illustrated in Figure 7.5 where the
variables of the motion are x(t) and ¹ is the parameter in question, the bifurcation parameter. A continuation
method is a computational (numerical) scheme for following, in this case, the changes of a period solution|a
limit cycle|as the values of one or more parameters are changed. A picture like Figure 7.5 is impossible to draw
for more than three coordinates so the conventional display of information is a bifurcation diagram in which the
amplitude of one variable in the limit cycle is plotted versus the parameters varied as the continuation method is
applied. Figure 7.5 shows two examples, a Hopf bifurcation, also called a supercritical bifurcation and a subcritical
bifurcation with a turning point. Those are the two types of bifurcation most common in the present context.

Figure 7.5. Schematic Illustration of the Continuation Method Applied to Limit Cycles

Figure 7.6. Two Examples of Bifurcation

Thus a bifurcation diagram is a locus of equilibrium point traced as the bifurcation parameter is changed.
As a practical matter, application of a continuation method is more systematic and cheaper to use than use of
numerical simulations. We have successfully used a continuation method (Doedel et al. 1991a,b; Doedel et al.
1997) to investigate four classes of problems:
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(i) consequences of time-averaging
(ii) consequences of truncating the modal expansion
(iii) in°uences of the linear parameters (®n; µn) on nonlinear behavior
(iv) pulsed instabilities: the conditions for existence of stable limit cycles in a linearly stable

system.

The problems (i) and (ii) are central to the matter of constructing reduced-order models. Hence it is important
to emphasize that in our view, application of the continuation method to investigate the consequences of time-
averaging and truncation is part of the procedure for establishing the validity of reduced order models within the
framework of analysis based on modal expansion and spatial averaging.

The continuation method is a powerful means for investigating many nonlinear problems in the classic listed
above. For more extensive discussions see Jahnke and Culick (1994); Burnley (1996); Burnley and Culick (1996);
and Ananthkrishnan and Culick (2002). As an illustration we quote here some results for limit cycles for systems
of longitudinal modes when only the gasdynamical nonlinearities are accounted for. We are interested in the
consequences of truncation with time-averaging.

In Section 7.1 we cited a few results for the limiting case of two modes described by the four equations found
with time-averaging. Figure 7.3 shows the special example of as e®ect of truncating the series expansion for the
time-averaged system: increasing the number of modes apparently widens the region of stability. In fact, use of
the continuation method has established the result that the existence for region of stability for limit cycles with
two modes is due to truncation. When the ¯rst mode is unstable, stable limit cycles exist for all values of ®, if
more than two modes are taken into account. That is true even if the original oscillator equations are used.

Figure 7.7 shows that if time-averaging is not used, there is a turning point in the bifurcation diagram. If

Figure 7.7. E®ect of Time-Averaging for Two Modes

more than two modes are accounted for, the boundary of stability persists for the time-averaged equations but
does not appear if more than two modes are included. Figure 7.8 is the result for the time-averaged equations
and Figure 7.9 shows the case of 4 modes computed for the full oscillator equations.

It seems true that if the system is only slightly unstable, then the system of time-averaged equations for
two-longitudinal modes is a good approximate model for investigating nonlinear behavior. However, if one is
generally interested in producing reduced order models, the e®ects of truncation and time-averaging should be
investigated. Applying a continuation method seems to be the best approach for doing so.
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Figure 7.8. Stability Boundaries by Truncation of the Time-Averaged Equations

Figure 7.9. Maximum Amplitude of ´1 in The Limit Cycle: Four Modes, Comparison of Results
for the Full Oscillator and the Time-Averaged Equations

7.3. Hysteresis and Control of Combustion Instabilities. The existence of hysteresis in the dynamical
behavior of combustions is both an interesting phenomenon to investigation and a characteristic that has poten-
tially important practical consequences. It seems that the ¯rst evidence for hysteresis in combustors was found
by Russian researchers concerned with instabilities in liquid rockets (Natanzon et al 1993; Natanzon 1999). In
that case, Natanzon and his co-workers proposed bifurcation of steady states of combustion, and the associated
hysteresis, as a possible explanation for the random occurrences of combustion instabilities. The Russian workers
were in a special situation a®ording them the opportunity to make such observations. The large Russian boosters
were designed to use many (up to thirty-three) liquid rocket engines in a single stage. Hence large numbers of
nominally identical engines were manufactured and tested for operational use. Su±cient data were obtained that
statistical analysis of the behavior could be carried out. Hence a basis existed for identifying random behavior.
The idea is the following.
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In a liquid rocket many zones of recirculation are created at the injector where jets of liquid fuel and/or
oxidizer enter the chamber. As an approximation, one may regard a recirculation zone as a chemical reactor
whose behavior is known to be well-characterized by the temperature of the incoming gases entrained from the
environment, and the average temperature within the zone. A fairly simple calculation based on consideration
of energy and mass °ows leads to the results sketched in Figure 7.10. The upper and lower branches of the

Figure 7.10. Hysteresis Loop for a Recirculated Zone Idealized as a Simple Chemical Reactor

hysteresis loop represent di®erent branches of stable combustion. Those states have di®erent in°uences on the
state of combustion in the chamber. It was Natanzon's assertion that the state associated with the lower branch
in Figure 7.10 (the cold recirculation zone) is more unstable and prone to lead to combustion instabilities. Which
branch is reached depends on the history of the engine, starting from ignition or some other sort of abrupt
transient. The ¯nal state of a recirculation zone therefore depends on random `accidents' of history. Therefore
random occurences or combustion instabilities may be observed. Figure 7.11 is a sketch of a possible recirculation
zone and adjacent °ow of a fuel or oxidizer jet, this model has been used as the basis for numerical calculations
supporting Natanzon's proposal.

Figure 7.11. Sketch of a Recirculation Zone formed by a Jet of Fuel or Oxidizer

In the mid-1980's research with a dump combustor at Caltech revealed the presence of a di®erent kind of
hysteresis of dynamical states of combustion (Smith, 1985; Sterling, 1987). The combustor has been described in
Section 1, Figure 1.3; Figure 6.2 shows the inlet region and the recirculation zone at the dump plane during steady
combustion. The combustor showed combustion instabilities in the neighborhood of the stability boundary de¯ned
in the plane of °ow rate and equivalence ratio. Figure 7.12(a). Figure 7.12(b) shows the hysteresis loop, observed
as dependence of the level if pressure oscillation on equivalent ratio with the total °ow rate held constant. This
sort of behavior has been observed also in other dump combustors (J. Cohen, UTRC; and G. Richards, METC) as
well as as in a °ame-driven Rijke tube (Seywert, 2001) and in an electrically driven Rijke tube (Matveev, 2002).

More recent works (Knoop et al. 1996; Isella et al. 1996) have established the physical nature of the
hysteresis in this case and have shown how active control can be used to extend the range of steady operation
into the hysteretic region. High speed ¯lms have con¯rmed that the upper branch of the loop is associated
with shedding of large vortices which, causing periodic combustion of entrained reactants sustain high amplitude
pressure oscillations. The lower branch is associated with relatively quiet combustion in a shear layer shed from
the lip at the inlet.
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(a) (b)

Figure 7.12. (a) Stability Boundary and (b) an Idealized Hysteresis Loop for the Caltech Dump Combustor

Familiar considerations of dynamical behavior suggest that it should be possible to achieve pulsed transitions
between the two branches of stable dynamical states. Those processes were demonstrated by Knoop et al and
Isella et al by injecting pulses of fuel at the inlet plane. Single pulses of fuel always cause transition from the
upper to the lower branch. Thus with suitable sensing and actuation it is possible always to maintain the low
level of oscillations (e®ectively `noise') within the zone where hysteresis exists.

This is a form of nonlinear control. Although it has been demonstrated only for the range of equivalence ratio
covering the zone of hysteresis, it is an important demonstration of active control at a frequency far less than the
frequency of the oscillations. That is a signi¯cant characteristic because if the reduced bandwidth required of the
control system, particularly the actuation.

7.4. Representing Noise in Analysis of Combustor Dynamics. Even a small laboratory combustor
radiates considerable noise, generated by turbulent motions (often called `combustion noise') within the chamber.
See, for example, the spectrum reproduced earlier as Figure 1.4. The scaling laws are not known, but it is obvious
to any bystander that a full-scale combustor of any sort is noisy indeed. Presently it is not well understood
how important noise is to the behavior of combustion instabilities or to the application of feedback control. The
purpose of this section is to introduce a means for investigating those matters within the framework developed
in Sections 3 and 4.

There are three sorts of problems that will arise:

(i) formal construction of noise (stochastic) sources in the framework of spatially averaged equa-
tions for unsteady motions in a combustor;

(ii) modelling the noise sources;
(iii) solving the stochastic di®erential equations.

The ¯rst step, as explained in Section 3.1, is to apply the principle of splitting small disturbances into the
three basic modes of propagation: acoustic waves, vorticity waves, and entropy waves. All of the discussion so far
in these lectures has been devoted to the acoustic ¯eld. Noise is associated with the random motions comprising
mainly vorticity but also entropy (or temperature) waves in a combustion chamber. Our concern in the present
context is directed chie°y to interactions of those motions with the acoustic ¯eld. The formal representation will
be relatively simple and intuitively persuasive, but modelling the details remains to be accomplished. Numerical
results require assumptions that cannot be justi¯ed a priori.
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Following the principle of splitting, we write the °ow variables as sums of the three contributions, one each
corresponding to the three modes of motion:

p0 = p0a + p
0
− + p

0
s

−−−0 = −−−0a +−−−
0
− +−−−

0
s

s0 = s0a + s
0
− + s

0
s

u0 = u0a + u0− + u0s

(7.10) a,b,c,d

Subscripts ( )a, ( )−, ( )s denote acoustic, vortical and entropic contributions. Once again, the ordering
procedure explained in Sections 3 and 4 allows us to derive meaningful results by considering only the ¯rst order
components. Hence we assume that only the acoustic waves contain pressure °uctuation; only the waves of
vorticity contain vorticity °uctuations; and only the entropy waves have °uctuations of entropy. The velocity
¯eld possesses contributions from all three modes.

The idea then is to substitute the assumed general forms of the variables and substitute in the primitive
equations of motion expanded to third order in the °uctuations. Then form the nonlinear equation for the
pressure and apply spatial averaging. This procedure was ¯rst reported by Culick et al. (1992) but in revised and
corrected form by Burnley (1996) and Burnley and Culick (1999). Eventually one ¯nds the oscillator equations,

Ä́n + !
2
n´n = Fn

by now Fn contains stochastic sources. The `general' form of Fn is
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and similar de¯nitions for the remaining integrals I1. See the references for details.

Then the unsteady velocity ¯eld is split according to (7.10) a,b,c,d. Eventually re-arrangement and application
of the assumptions discussed above leads to the result

Ä́n + !
2
n´n = 2®n _́n + 2!nµn´n ¡

1X
i=1

1X
i=1

[Anij _́i _́j +Bnij´i´j ]

+
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[»vni _́i + »ni´i] + ¥n +
¡
FNLn

¢
other

(7.11)

where the »vni, »ni and ¥n are stochastic sources de¯ned as integrals over the vortical and entropic °uctuations of
the velocity. See the references cited above for details.

No modeling based on experimental, theoretical or phenomenological grounds has been accomplished. Explicit
results have been obtained by approximating the stochastic sources as white noise processes having properties
chosen to be realistic, i.e. the results seem to be reasonably consistent with available measurements of actual
behavior.

Two types of stochastic in°uences arise in (7.11):

(i) ¥ni, ¥
v
ni represent stochastic in°uences on the `spring' or natural frequency of the n

th mode
and on the damping or growth rate. These are formally referred to as `multiplicative noise
sources' because they appear as factors multiplying the dependent variables, the displacement
and velocity of the nth oscillator.

(ii) ¥n represents a stochastic driving source causing excitation of the n
th oscillator even in

the absence of driving by combustion processes; the ¥n are formally called `additive noise
sources'.
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It is evident from the form of (7.11) that the random character of the stochastic sources will appear as
random °uctuations imposed on the amplitudes ´n(t) of the acoustic modes; exactly the sort of behavior found
experimentally. Thus, Fourier synthesis of the pressure ¯eld, the modal expansion, continues to serve as a good
approximate representation of the deterministic results can be obtained by retaining only a small number of
terms.

Results were obtained ¯rst for the simplest, case of two modes, with noise sources only in the fundamental
mode. Nonlinear gasdynamic coupling transfer stochastic behavior to the second mode. Computations have been
carried out with a Monte-Carlo method to give probability density functions, with the equations written in the
Stratonovich form of stochastic di®erential equations (Burnley, 1996). Figure 7.13 shows the pressure trace and
spectrum for a simulation in which the ¯rst mode is unstable.

Figure 7.13. Pressure Trace and Spectrum for a Simulation with Noise; Four Modes Included,
First Mode Unstable

This method of accounted for noise in a combustor seems to be very promising. However modeling the
noise sources is in a primitive state, and comparisons of results with experimental observations can only be done
qualitatively.

7.5. System Identi¯cation for Combustor Dynamics with Noise. Use of system identi¯cation in the
¯eld of combustor dynamics seems to have been developed ¯rst by Russian groups as part of their development of
liquid rocket engines, beginning perhaps as early as the 1950's but certainly in the 1960's (Agarkov et al. 1993).

In several papers during the 1980's, Hessler (1979, 1980, 1982) and Duer and Hessler (1984), and more recently
Hessler and Glick (1998) have asserted that the oscillations observed as combustion instabilities in solid rocket
motors are driven rather than self-excited. The sources of the driving|i.e. the `mechanisms'|are supposed to
be either vortex shedding or noise. Hessler and co-workers conclude that the properties of the noise measured in
a stable chamber can be used as the basis for infusing properties of the primary mechanism causing instabilities
when they arise or more correctly, such data will provide quantitative information about the static stability
margins|how close the dominant acoustic modes are to becoming unstable.

The basic idea is sound. When the mechanisms are interpreted as driving forces independent of the acoustic
¯eld, and they are assumed to be broad-band, then the acoustic modes are excited to amplitudes related directly
to the amount of damping (®n). Hence the idea is to process noisy records in such a fashion as to extract the
values of the linear parameters (®n; µn). The proposed method can be tested using the oscillator equations with
some sources derived in the preceding section.
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Seywert and Culick (1999) have reported results of some numerical simulations carried out to check the idea
just described. In particular, the main purpose was to determine the accuracy with which the experimental
method would give the linear parameters. The procedure is straightforward. To be de¯nite and to keep the
computations within practical bounds, we consider a system of four modes, each containing noise sources which,
as explained in Section 7.4, are assumed to be white noise. The amplitudes of the noise (rms values) are selected
so that random amplitude °uctuations in the pressure spectrum have values in the ranges experimentally observed
(Seywert and Culick).

Three types of problems arise, associated with the three types of noise sources: additive noise, ¥n; and two
kinds of multiplicative noise, »vn which a®ects mainly the growth and decay rates, and »n which causes random
variations of the frequency. In all cases we are concerned here with discovering the ways in which noise a®ects the
result of system identi¯cation. The idea is to select values of the ®n, µn and carry out numerical simulations. The
data are then processed to give values of the ®n, µn which now have mean values and some uncertainties due to the
presence of the noise. The questions to be answered are: How close are the mean values to the time values used as
inputs? and How large are the uncertainties? These are important practical matters. If the method is e®ective,
then data from hot ¯rings of full-scale combustors could be used to infer the linear parameters characterizing
the dynamics represented by several modes. Those parameters identify the poles of the response function of
the chamber. Hence a relatively straightforward process would give the information required to proceed with
designing a linear control system (see Section 2.5).

Actually there are two ways to get the information: process pressure records naturally occurring; or process
the pressure record following an pulse. The method of pulsing has long been used as means of assessing the
stability margin of liquid rockets (Harrje and Reardon, 1972). Both methods have been used for a stable system
of four longitudinal modes having the parameters given in the table; the fundamental frequency is 900 s¡1. Figure
7.14 shows a simulated pressure trace and Figure 7.15 shows its power spectrum and construction using Berg's
method.25

mode 1 2 3 4

®n(s
¡1) ¡50 ¡375 ¡584 ¡889

µn(s
¡1) 12:9 46:8 ¡29 ¡131

Table 7.1. Values of the Linear Parameters

Figure 7.14. Simulated Pressure Trace with Noise; All Modes Stable

25Berg's method is a standard method of signal processing, widely available. We have used the software included in the Signal
Processing Toolbox, and extension of MATLAB.
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In Figure 7.17, a simulated response to a pulse is ¯tted by the superposition of four modes:

p0

¹p
=

4X
i=1

Aie
®it cos(!it+ Ái)

The parameters Ai, ®i, !i, Ái are ¯tted using a least squares method.

Figure 7.15. Application of Berg's Method: Power Spectrum of the Pressure Trace in Figure
7.14 and its Reconstruction

Figure 7.16. Dependence of the Peak Amplitudes of the Power Spectra for Four Modes, on Noise Power

Without good data for the noise in an actual combustor and no model, we assume white noise sources. Their
amplitudes are chosen so that the average (rms) values of the simulated pressure records are reasonable Table 7.2
shows the relation between the rms value of the system response (p0=¹p) and the noise power of ¥. The `noisepower'
cannot be measured, being the height of the power spectral density of the noise. Figure 7.16 gives a more detailed
picture, showing how the amplitudes of the spectra of the four modes increase with noise power.

We use the noise power as a parameter. Figure 7.18 shows an example of the sort of results one ¯nds for
multiplicative noise in the modal damping (»vn 6= 0; »n = 0; ¥n = 0). The corresponding results of using the
pulse method are given in Figure 7.19.
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Noise Power of ¥n rms Values of p0=¹p

101 :005%

103 :05%

105 :5%

Table 7.2. Relation Between the Noise Power of ¥n and the rms Value of the Simulated Pressure
Fluctuation

Figure 7.17. Reconstructed Pressure Trace for the Transient Response Excited by a 10% Pulse

Figure 7.18. Values of Decay Rates (Modal Attenuation) Found with Berg's Method with
Multiplicative (»n) Noise

We conclude from these results that substantial errors may accompany system identi¯cation in the presence
of realistic (we believe) noise. How signi¯cant the errors are depends the particular application at hand and in
how small the stability margins are. For a weakly stable system, values of the margins determined in this way are
suspect because of the ¯nite uncertainties. The results would therefore not be useful as a basis for representing
the combustor's response function.
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Figure 7.19. Values of Decay Rates (Modal Attenuation) Found with the Method of Pulsing

It should be clear from the nature of the methods described here that the system must be stable (i.e. all
modes must be stable) for this application. For example, if data (simulated) for a limit cycle are processed in
this fashion, the inferred values of ®n, µn have no apparent connection with the correct values.
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8. PASSIVE CONTROL OF COMBUSTION INSTABILITIES

Given the irrefutable observational evidence that combustion instabilities will almost inevitably occur during
development of new motors, the problem of treating them becomes crucially important. The goal must be to
eliminate undesirable oscillation, but as a practical matter it may well be satisfactory to reduce their amplitudes
to acceptable levels. The manufacturer and the customer must then be con¯dent that the amplitudes will not
grow unexpectedly at some later time.

Figure 1.6 suggests the intentions or goals of introducing passive control:

(i) Increase the losses of acoustic energy so they exceed the gains in the frequency range where the instability
occurs;

(ii) Reduce the gains of acoustic energy below the losses; or

(iii) Shift the natural frequencies of the chamber modes so that none lie within the range of frequencies where
the gains of acoustic energy exceed the losses.

The chief ways of achieving these goals in practice are:

(i) Increase the losses of acoustic energy:
² modify the geometry including possibly, the shape of the nozzle entry section
² add resonators, ba²es or `resonant rods'
² introduce stability additives

(ii) Reduce the gains of acoustic energy:
² eliminate geometrical causes of vortex shedding
² change the composition of the propellant|notably the size distribution of oxidizer particles
² introduce stability additives

(iii) Shift the natural frequencies of the chamber
² change the geometry of the chamber

Of the various possibilities, the most commonly used now are changes of geometry, and introduction of stability
additives.

Generally there are three reasons to revise the internal design: eliminate possible causes of vortex shedding;
shift the frequencies of the normal modes; and increase the gains, or reduce the losses of acoustic energy. The
last tactic rests on understanding the contributions to the growth/decay constant, as well as the way in which
the shape of the grain changes with time during a ¯ring. The results shown in Figure 8.1 illustrate the point.

It is particularly important to know as well as possible the relative importance of pressure and velocity
coupling. That understanding requires knowing the acoustic mode shapes|easily acquired (or estimated if
necessary)|and, more importantly, the response functions of the propellant for pressure and velocity coupling.
We have emphasized in Section 2 that at the present time data for the pressure coupled response can be obtained
only with di±culty and considerable uncertainty. There is no method for routinely determining the velocity
coupled response.

The problem of relating changes of composition of a propellant to changes of its combustion dynamics remains
essentially unsolved. Experience has provided some guidelines (in°uences of AP particle size distribution is
perhaps the best example) but what is available has largely to do with the e®ects of quite signi¯cant changes of
composition on the pressure-coupled response. The consequences of small changes of composition (which may be
inadvertant and within manufacturing speci¯cations) are simply not understood. The inability to obtain accurate
experimental results is a serious obstacle to improving this situation.

To good approximation, the dynamics of velocity coupling are not understood. Qualitative ideas are available
(see Section 2) but|again due to the lack of a good test method|the true mechanisms cannot be determined
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and it is impossible to collect quantitative information. This remains, in the author's opinion, the most signi¯cant
and di±cult outstanding problem in this ¯eld.

In practice, much reliance has been placed on small changes of propellant composition, the use of `stability
additives.' Following the early use of resonance rods to provide stability in small motors, the favorable e®ects of
stability additives were ¯rst investigated in the 1950s and 1960s (Summer¯eld 1960; Waesche 1999; Price 1971;
Evans and Smith 1978). Much of the experience rests in proprietary company ¯les, possibly under the heading
\fairy dust."

Stability additives seem to have two main consequences: they may change the propellant response function
(pressure or velocity coupling or both); and they certainly a®ect the properties of condensed combustion products
that act to attenuate acoustic oscillations. As many as 80 di®erent additives have been studied, but only a very
small number have been widely used. The most common are aluminum oxide and zirconium oxide. Changing the
properties of the primary metallic aluminum in the propellant may have substantial favorable consquences.

Changes in the response function may be due both to physical and chemical processes. What actually happens
cannot be established unambiguously. In this situation, the collaboration of experimental tests (however crude);
observation of the behavior of sub- and full-scale motors; spectulation; and theory, is extremely important. The
continued elaboration of analyses of the sort discussed brie°y in Section 2 is basic to this process, including
calculation of linear and nonlinear dynamical behavior in motors.

For motors containing aluminum, the most signi¯cant damping process is the viscous interaction between
condensed material and the surrounding gases under oscillatory conditions. The amount of attenuation is pro-
portional to the amount of condensed material present but especially depends on the particle size distribution.
Figure 8.1 shows the results of calculations of the attenuation. The main and extremely important point is that
for a given frequency and particle loading (mass of particles per unit mass of gas/particle mixture) the maximum
attenuation is strongly dependent on particle size. Hence in practice, means are sought to alter the combustion of
the propellant and aluminum to generate particles of condensed aluminum oxide having size suitable for greastest
damping of the instability at hand. In recent years this has been possibly the most widely used (or at least
contemplated) strategy to treat instabilities in motors operating with metallized propellants and has often been
successful. The strategy is of course less relevant to smokeless and low smoke systems. Hence the search for `fairy
dust.'

Figure 8.1. Attenuation of Acoustic Waves by Particles Suspended in a Gas.
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A. EQUATIONS OF MOTION

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer and combustion products
including soot and condensed metal oxides. Hence the equations of motion must account for two or three phases
and at least one species in each. For investigating the dynamics of combustors, it is entirely adequate to represent
each phase as its mass average over all member species. It is unnecessary to distinguish liquid and solid material
and we assume a single species in the condensed phase, devoted by subscript ( )l. For some applications it is
appropriate to extend the representation slightly to accommodate distributions of particle sizes, not included in
this appendix. There is some advantage to treating the gas phase as a multi-component reacting mixture. As the
primitive conservation equations we therefore begin with the following set:

A.1. General Equations of Motion. Conservation of Species

@½i
@t

+r ¢ (½iui) = wi + w(l)i + wei (A.1)

Global Conservation of Mass, Gas Phase
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Global Conservation of Mass, Condensed Phase26
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Equation of State, Gas Phase

p = ½gRgTg (A.6)

For simpli¯cation, the above equations already contain some terms involving mass averaging over the species

comprising the gas phase, namely the viscous tensor
$
¿
$
¿
$
¿ v; the vector q representing heat conduction; and the

equation, of state (A.6). For more complete derivations of the equations for multicomponent mixtures, see for
example Chapman and Cowling (1958); Hirschfelder, Curtis and Bird (19 ); Truesdell and Toupin (1960); and
Williams (1985). Superscript ( )(l) means that the liquid phase is the source and subscript ( )e denotes an external
source. It follows from repeated use of the Gibbs-Dalton law for mixtures of perfect gases that p is the sum of
partial pressures, ½g is the sum of the densities and R is the mass average of the individual gas species, so for the
gas phase we have

p =
X

pi

½g =
X

½i (A.7) a,b,c

Rg =
1

½g

X
½iRi

26Note that ½l represents the mass of condensed material per unit volume of chamber, not the density of the material itself.
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Subscript ( )i identi¯es the i
th gaseous species; and in all cases except Tg, ( )g means a mass average over all gas

species as, for example,

ug =
1

½g

X
½iui =

X
Yiui (A.8)

where Yi = ½i=½g is the mass concentration of the i
th species.

Writing equations (A.1){(A.5) explicitly with sums over species allows proper accounting of the in°uencesof
di®usion, and leads to the formula for energy released by chemical reactions written in the conventional fashion.
Thus the basis for subsequently modeling is rigorously set. For analysis of unsteady motins in combustors it is
perfectly adequate to reduce the general description for a multicomponent mixture to a model representing a
single °uid having the mass-averaged properties of the actual mixture. Details of the procedure may be found
elsewhere (Culick 1999). Only the results are germane here. The set of equations forming the basis for the theory
and analysis we discuss in these lectures is:
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p = R½T (A.14)

For completeness we have also included the equation (A.13) for the entropy, obtained in familiar fashion by
applying the combined. First and Second Laws of Thermodynamics to an element of °uid. That is, the relation
de = Tds¡ pdv can be written
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Substitution of (A.9) and (A.11) gives (A.13) with the source

S= Q¡ p

½2
W (A.16)

It is important to realize that this formulation contains all relevant physical processes, including those repre-
senting the actions of external in°uences associated, for example, with active control of combustor dynamics.

The source functions in (A.9){(A.13) are

W = we ¡r ¢ (½l±u) (A.17)
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(A.19)
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P=
R

Cv
Q+RT [W ¡r ¢ (½l±u)] (A.20)

S= Q¡ p

½2
W (A.21)

The quantities ±( ) represent di®erences between values for the gas and condensed phases. For example,
±T = Tl ¡ Tg in the di®erence in temperature between the temperature Tl of the condensed phase and that, Tg,
of the gas phase.

A.2. Expansions in Mean and Fluctuating Variables. Following the steps suggested in Section 3.3 to
produce equations (3.23){(3.28) will give the expressions for the brackets de¯ned there to simplify the appearance
of the equations:
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f½g2 = r ¢ (½0M0) (A.23)

f[M ]g1 = ¹½( ¹M ¢ rM0 +M0 ¢ r ¹M+ ½0
¹D ¹M

Dt
(A.24)

fMg2 = ½0 @M
0

@t
+ ¹½M0 ¢ rM0 + ½0

¡
¹M ¢ rM0 +M0 ¢ r ¹M¢ (A.25)

fMg3 = ½0M0 ¢ rM0 (A.26)

f[T ]g1 = ¹½Cv
¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0 ¹D ¹T

Dt
+ p0 ¢ r ¹M (A.27)

fTg2 = Cv½0 @T
0

@t
+ Cv½

0 ¡ ¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv ¹½M0 ¢ rT 0 + p0r ¢M0 (A.28)

fTg3 = Cv½0M0 ¢ rT 0 (A.29)

f[p]g1 = ¹M ¢ rp0 +M0 ¢ r¹p+ °p0r ¢ ¹M (A.30)

fpg2 =M0 ¢ rp0 + °p0r ¢M0 (A.31)

f[s]g1 = ¹½ ¹T ¹M ¢ rs0 + ½0 ¹T
¹D¹s

Dt
+ ¹½

¡
¹TM0 + T 0 ¹M

¢ ¢ r¹s (A.32)

fsg2 = ½0 ¹T
¹Ds0

Dt
+ ½0T 0

¹D¹s

Dt
+
¡
½0 ¹T + ¹½T 0

¢
M0 ¢ r¹s+ ¹½T 0 @s

0

@t
(A.33)

fsg3 =
¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 ¡M0 ¢ r¹s+ ¹M ¢ rs0¢ (A.34)

fsg4 = ½0T 0M0 ¢ rs0 (A.35)
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The subscript f gn on the curly brackets means that the contained quantities are written to order n in the
°uctuations of °ow variables. Similarly, the square brackets indicate that the terms are of ¯rst order in the Mach
number of the mean °ow. Higher order square brackets are not required, as explained in Section 3.3.1.
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B. THE EQUATIONS FOR ONE-DIMENSIONAL UNSTEADY MOTIONS

These are many problems for which the °ow may be approximated as one-dimensional. Even when the
approximation may not seem as accurate as we might like, it is always a good beginning. The desired results
are usually obtained without real e®ect and often are inspiringly close to the truth. An elementary example is
computation of the normal modes for a straight tube having discontinuities, Section 5.5.2. Here we are concerned
with situations in which in°uences at the lateral boundary must be accounted for. The formulation of the general
problem is then essentially the counterpart of the constitution of the one-dimensional equations for steady °ow
in ducts thoroughly discussed by Shapiro (1953).

Accounting for changes of area in the one-dimensional approximation is a straightforward matter; following
the rules applied to derivations appearing in the three-dimensional equations:

u ¢ r( )! u
@

@x
( )

r ¢ ( )! 1

Sc

@

@x
Sc( )

r2( ) =
1

Sc

@

@x
Sc
@( )

@x

(B.1)

where the axis of the duct lies along the x-direction and Sc(x) is the distribution of the cross-section area.

More interesting are consequences of processes at the lateral boundary, particularly when there is °ow through
the surface. The most important applications arise in solid propellant rockets when burning propellant forms
all or part of the lateral surface. In°ow of mass momentum and energy must be accounted for (Culick 1971,
1973; Culick and Yang 1992). The equations have the same form as the three-dimensional equations derived in
Appendix A, equations (A.9){(A.13) but the rule (B.1) applied and only the velocity component u along axis of
the duct taken to be non-zero:

Conservation of Mass
D½

dt
= ¡½ 1

Sc

@

@x
(Scu) + W 1 + W 1s (B.2)

Conservation of Momentum

½
Du

Dt
= ¡@p

@x
+ F1 + F1s (B.3)

Conservation of Energy

½Cv
DT

Dt
= ¡p 1

Sc

@

@x
(Scu) + Q1 + Q1s (B.4)

Equation for the Pressure

Dp

Dt
= ¡°p 1

Sc

@

@x
(Scu) + P1 + P1s (B.5)

Equation for the Entropy

Ds

Dt
=
1

T
(S1 +S1s) (B.6)

where
D

Dt
=
@

@t
+ u

@

@x
(B.7)

The source terms W 1, F1, Q1, P1 and S1 are the one-dimensional forms of (A.17){(A.21) written for the axial
component of velocity only and with the rules (B.1) applied. In addition, sources of mass, momentum and energy
associated with °ow through the lateral boundary are represented by the symbols with subscript ( )s (Culick
1973, Culick and Yang 1995):
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W 1s =
1

Sc

Z
msdq =

1

Sc

Z £
mg
s +m

l
s

¤
dq (B.8)

F1s =
1

Sc

Z £
(us ¡ u)mg

s + (uls ¡ ul)ml
s

¤
dq (B.9)

Q1s =
1

Sc

Z £
(h0s ¡ e0)mg

s + (el0s ¡ ul0)ml
s + CvTm

g
s

¤
dq (B.10)

P1s =
R

Cv
Qs1 (B.11)

S1s =
1

p
Q1s =

p

½
W 1s (B.12)

Superscripts ( )(g) and ( )(l) refer respectively to the gas and liquid phases and subscript ( )s
denotes values at the surface. The mass °uxes at the surface, m

(g)
s and m

(l)
s are of course computed as values

normal to the boundary and are positive for inward °ow. Here q stands for the parameter of the local section
normal to the axis.

B.1. Equations for Unsteady One-Dimensional Motions. Forming the equations for the °uctuating
motions within the one-dimensional approximation is done in exactly the same way as for the general equations,
Appendix A. We need only apply the rules (B.1) and add to the inhomogeneous functions h and f the contributions
from processes at the boundary. As for the general three-dimensional equations, we defer writing the °uctuations
W 0
1, F

0
1, ¢ ¢ ¢ until we consider speci¯c problems.

The procedure introduced in Section 3.3.3 for forming the systems of equations for a hierarchy of problems
applies equally to one-dimensional motions. As above, the equations are obtained from the three-dimensional
equations by applying the rules (B.1): the results can be constructed when needed. However, the contributions
from processes at the lateral boundary are special. Written to ¯rst order in the °uctuations and the Mach number
of the mean °ow; the dimensional forms of (B.8){(B.12) are:

W 0
1s =

1

Sc

Z ¡
m2
s

¢0
dq (B.13)

F01s =
1

Sc
(¹us ¡ ¹u)

Z
(mg

s)
0 dq +

1

Sc
(¹uls ¡ ¹u)

Z ¡
ml
s

¢0
dq

+
1

Sc
(u0s ¡ u0)

Z
¹mg
sdq +

1

Sc
(u0ls ¡ u0l)

Z
¹ml
sdq

(B.14)

Q01s =
1

Sc

¡
¹h0s ¡ e0

¢ Z
(mg

s)
0 dq +

1

Sc
+ (¹el0s ¡ ¹el0)

Z ¡
ml
s

¢0
dq + Cv ¹T

Z
(mg

s)
0 dq

+
1

Sc
(h00s ¡ e00)

Z
¹mg0
s dq +

1

Sc
+ (e0l0s ¡ e0l0)

Z
¹ml
s + CvT

Z
(mg

s)
0
dq

(B.15)

P01s =
R

Cv
Q01s (B.16)

S01s =
1

p
Q01s ¡

p

½
W 0
1s (B.17)
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Abstract

Future combustors designed for better e±ciency and lower pollutant emission are expected to operate closer to
their stability boundary, thereby increasing the risk of encountering combustion instability. Onset of combustion
instability leads to limit cycle oscillations in the acoustical °uctuations that can often reach amplitudes large
enough to cause severe damage. Active control strategies are, therefore, being considered to prevent combustion
instabilities, but their development requires nonlinear models that can faithfully capture the combustor system
dynamics. A framework for the approximate analysis of the nonlinear acoustics in a combustion chamber ex-
ists, which includes all relevant linear contributions and also second order gasdynamic nonlinearities. Nonlinear
combustion e®ects in the form of pressure and velocity coupling models have also been incorporated into the
analysis with the aim of capturing the phenomenon of triggered instability, where the acoustical °uctuations are
linearly stable to small perturbations, but show a limit cycle behavior for larger perturbations. However, several
questions such as those relating to 1) modal truncation of the equations for the acoustic dynamics, 2) absence
of triggered limit cycles in the formulation with only second order gasdynamic nonlinearities, and 3) the form of
the velocity coupling function, including the need for a threshold character, have not been satisfactorily resolved.
In this paper, we address some of these questions on modeling and dynamics of acoustic waves in combustion
chambers, using the approximate analysis, that have remained unanswered over the years.

1. Introduction

Combustion chambers operating under conditions that favor high e±ciency and low pollutant emission are prone
to su®er from combustion instabilities. These instabilities arise due to a coupling between the unsteady °uid mo-
tion and the combustion processes in the chamber. This interaction can be thought of as analogous to a positive
feedback mechanism where °uctuations in the °ow properties and in the combustion heat release drive each other
in a regenerative manner. Amplitude dependent nonlinearities then cut in to limit the growth in the °uctuations.
Thus, to an observer external to the chamber, combustion instabilities appear as self-excited limit cycle oscilla-
tions in the °ow variables. It was shown by Chu and Kovasznay [1] that the °uctuations could be represented by
a combination of acoustic, vortical, and entropic waves propagating in the combustion chamber. Traditionally,
the term combustion instability has been used to refer to instabilities in the acoustical °uctuations. These acous-
tic oscillations can often reach amplitudes large enough to cause severe damage, and sometimes even complete
failure. As a result, considerable e®ort has been made in the past to predict the onset of acoustic instabilities
in combustion chambers. Solid propellant rocket motors have been known to exhibit two qualitatively di®erent
kinds of behavior at onset of combustion instability: 1) linear instability, where the acoustical °uctuations, in
response to a small perturbation, build up to a limit cycle, and 2) nonlinear instability, where the acoustical
°uctuations show a stable, damped response for small perturbations, but show a limit cycle response to larger
perturbations. Nonlinear instability of this nature has been called pulsed or triggered instability [2, 3]. Both
linear and nonlinear (triggered) instability have been observed in recent experiments on a gas turbine combustor
as well [4].

Much of the early work on combustion instability dealt with the question of linear stability, assuming that the
acoustic oscillations could be described in terms of the classical acoustic modes of the combustion chamber. The
linear combustion instability problem appears to have been satisfactorily addressed, though work continues on the
e®ects of the vorticity and entropy waves in the combustion chamber on the stability of the acoustic oscillations
[5, 6]. It was, however, recognized early on that the dynamics of acoustic waves in combustion chambers was
essentially nonlinear, and that it was necessary to be able to understand and model the nonlinear behavior of
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these acoustic waves. The subject of nonlinear acoustics in combustion chambers began to be addressed by several
researchers in the 1960's and 1970's. Most of these developments have been reviewed by Culick [7, 8], and are,
therefore, not repeated here. The work by Culick [9, 10] during this period provided a general framework for the
analysis of the nonlinear dynamics and stability of acoustic waves in combustion chambers. Under this framework,
the partial di®erential equations of °uid conservation were approximated by a spatial averaging procedure to a set
of ordinary di®erential equations for the amplitudes of the acoustic modes. The approximations in the analysis,
and the derivation of the equations for the acoustic modes, have been described on several occasions [7, 8]. The
equations for the modal amplitudes form a set of coupled, nonlinear di®erential equations that account for all
relevant linear processes and include contributions from nonlinear gasdynamics to second order. On truncating
the equations to a ¯nite number of modes, the modal equations could be solved for the time evolution of the
acoustic oscillations.

Culick and Yang [11] reported a numerically computed solution for the acoustic oscillations with a ¯ve-mode
truncation of the approximate equations that was found to compare reasonably with a more exact numerical solu-
tion [11]. Conditions for the existence and stability of the limit cycle oscillations, and the qualitative dependence
of the limit cycles on the system parameters, for the case of two longitudinal acoustic modes, were reported by
Awad and Culick [12], and by Paparizos and Culick [13]. However, none of these studies were able to demonstrate
triggered instability. It was felt, but not conclusively established, that the approximate analysis with nonlinear,
second order gasdynamics alone was not capable of showing triggered instability. Extensions of the formulation
to include third order gasdynamic nonlinearities and higher order interactions between the mean °ow and the
acoustics were equally unsuccessful in capturing triggered instability [14] in contrast to earlier results reported by
Zinn [15]. The di®erence between the two conclusions remains unexplained. Nonlinear combustion models then
remained the most attractive candidate to represent triggered instability within the framework of the approximate
analysis. Unsteady combustion in solid propellant rockets had already been described in terms of pressure and
velocity coupling models [16]. Numerical studies by Levine and Baum [17] with an ad hoc velocity coupling model
showed that triggered instabilities could indeed be found when nonlinear combustion processes were accounted
for. However, the form of the velocity coupling function was purely empirical and it was di±cult to judge its
validity or uniqueness. Also, it was not easy to arrive at qualitative conclusions regarding the conditions for onset
of triggered instability from numerical simulations alone.

A signi¯cant step forward in the investigations came with the introduction of the methods of modern dynami-
cal systems theory by Jahnke and Culick [18] to the analysis of nonlinear combustion instabilities. By using a
continuation algorithm, it became possible to systematically and e±ciently compute all steady state and limit
cycle solutions over a range of parameter values. Stability of each steady state and limit cycle solution could be
numerically established, and points of onset of instability could be identi¯ed with bifurcations. The qualitative
behavior of the acoustic waves at onset of combustion instability then depends on the type of bifurcation, and
on the nature of the limit cycles that emerge at the bifurcation point. This information is usually represented in
the form of a plot of steady state values (peak amplitude in case of a limit cycle) against a suitable parameter
in a bifurcation diagram. For longitudinal acoustic modes in a combustion chamber of uniform cross section,
Jahnke and Culick [18] showed that results from a two-mode approximation were qualitatively dissimilar to those
from a four- or six-mode approximation. However, they could draw no conclusion about the number of acoustic
modes that need to be retained in their analysis, nor did their computations with second order gasdynamics alone
display triggered limit cycles. Culick et al [19] extended the work in [18] by including the nonlinear combustion
model of Levine and Baum [17] in addition to the second order gasdynamic nonlinearities. They con¯rmed that
the nonlinear velocity coupling term in the Levine-Baum model did induce triggered limit cycles. However, their
results with and without time-averaging showed signi¯cant discrepancies. Their studies also suggested that a
four-mode approximation could satisfactorily capture the qualitative dynamics for the case of a ¯rst mode insta-
bility. Experiments by Ma et al [20] have suggested that the velocity coupling function has a threshold nature,
i.e., there is a threshold value of the acoustic velocity below which the e®ects of nonlinear combustion are not
felt. In a recent paper, using a four-mode truncation and an ad hoc threshold velocity coupling model, Burnley
and Culick [21] have computed a bifurcation diagram which shows triggered limit cycles. Additional results are
available in the thesis by Burnley [22].
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Despite the impressive progress over the last three decades in modeling the nonlinear dynamics of acoustic waves
in combustion chambers, many questions yet remain unanswered. For example, ¯rst of all, there is still no convinc-
ing argument for how many modes need to be retained in a truncated model of the coupled oscillator equations
in order to predict the qualitative dynamics of the acoustic modes correctly. Secondly, though widely believed, it
has never been de¯nitely established that the approximate analysis with second order gasdynamics alone could
not show triggered instability. Thirdly, the form of the velocity coupling function and, in particular, the need
for a threshold character, has not been satisfactorily explained. These and such other questions have gained
signi¯cance in the light of recent focus on active control of combustion instabilities [23, 24]. Rather than restrict
operation to safe, stable regions at the cost of decreased performance, future combustors seeking higher perfor-
mance will be operated closer to their stability boundary, thereby increasing the risk of encountering combustion
instability. Active control strategies promise to provide a feasible solution to the problem of preventing instability
in these combustors, but they are expected to depend heavily on nonlinear models that can successfully capture
the qualitative features of the combustion system dynamics. The approximate formulation developed by Culick
and his co-workers appears to provide a suitable framework for the development of active control laws for combus-
tion instability, but there is a need to address questions such as those listed above before the Culick framework
can be con¯dently applied to devise active combustion control strategies. Recent developments [25, 26, 27] in
the use of bifurcation theory for the modeling of large-amplitude limit cycle oscillations have made it possible to
seek answers to some questions on the qualitative dynamics of the acoustic waves at onset of combustion instability.

In the remainder of this paper, we ¯rst closely examine the coupled oscillator equations for the acoustic modal
amplitudes. A careful study of the energy transfer between the acoustic modes provides a clue to the number
of modes that need to be retained for a qualitatively correct analysis of the limit cycles at onset of combus-
tion instability. The minimum order of the modal truncation for the ¯rst and second mode instability cases is
determined, thereby resolving a longstanding issue in the modeling of acoustic waves in combustion chambers.
Following this, two known mechanisms for triggered instability in coupled oscillator systems are brie°y reviewed.
With this knowledge, we then explain the lack of triggered limit cycles in the approximate formulation contain-
ing only second order gasdynamic nonlinearities. This is a result that, though widely believed in the past, has
been theoretically established here for the ¯rst time. Finally, nonlinear combustion mechanisms for triggering
are studied. Observations by Culick et al [19] that nonlinear pressure coupling does not lead to triggering are
now explained. Velocity coupling models used in the past are evaluated and are found to display non-physical
dynamical behavior. The need for a threshold velocity coupling function is critically examined and a new form of
the velocity coupling function is derived that naturally shows a threshold character. The approach at all times is
from the viewpoint of the qualitative theory of dynamical systems. However, numerical results are provided to
illustrate the conclusions arrived at from the theory.

2. Coupled Oscillator Equations

The nonlinear dynamics of acoustic waves in a combustion chamber has been modeled by Culick [10] as a set of
coupled second order oscillators, one for each acoustic mode. For the case of a combustion chamber of uniform
cross section as considered in [18, 19], the modal natural frequencies can be assumed to be integral multiples of
the primary acoustic mode frequency. Then, the coupled oscillator equations, with time non-dimensionalized by
the primary mode frequency, can be written as follows:

Ä́n ¡ 2®̂n _́n + n(n¡ 2µ̂n)´n = ¡
n¡1X
i=1

³
Ĉ
(1)
ni _́i _́n¡i + D̂

(1)
ni ´i´n¡i

´
¡

1X
i=1

³
Ĉ
(2)
ni _́i _́n+i + D̂

(2)
ni ´i´n+i

´
(2.1)

where ´n is the amplitude of the n
th acoustic mode. Equation (2.1) includes linear contributions from combustion

processes, gas-particle interactions, boundary conditions, and interactions between the steady and unsteady °ow
¯elds. Additionally, Eq. (2.1) also includes contributions from nonlinear gasdynamics to second order as given by

the quadratic terms on the right hand side, where the coe±cients Ĉ; D̂ are as follows:

Ĉ
(1)
ni =

¡1
2°i(n¡ i) [n

2 + i(n¡ i)(° ¡ 1)]
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The parameters ®̂n and µ̂n in Eq. (2.1) are de¯ned as

®̂n = ®n=!1; µ̂n = µn=!1

where !1 is the natural frequency of the ¯rst acoustic mode. For a cylindrical chamber of L=D = 11:8, the ¯rst
mode frequency, !1, is 5654:86 rad/s, and typical values for the linear growth rates, ®n, and frequency shifts, µn,
are as given in Table 1. It can be seen from Table 1 that the modes are generally lightly damped and have only
small frequency shifts, which means that the shifted modal frequencies remain appoximately integral multiples of
the shifted primary mode frequency. It may also be noticed that the oscillators in Eq. (2.1) are linearly uncoupled,
but are coupled through the nonlinear gasdynamic terms. In particular, it will be seen later that the quadratic
terms on the right hand side of Eq. (2.1) with coe±cients Ĉ(1) and D̂(1) ensure that the set of oscillators is
resonantly coupled. For a set of resonantly coupled, lightly damped, nonlinear oscillators as in Eq. (2.1), it is not
immediately obvious as to which modes a®ect the stability of a particular mode. Therefore, the question of how
many higher order modes need to be retained for a correct solution of the nth mode instability problem is not
easy to answer. Previous numerical results [18, 19] suggest that when too few modes are retained in an analysis,
the qualitative predictions of the nonlinear dynamic behavior at instability may be incorrect. At the same time,
inclusion of higher order modes beyond a point does not seem to have a signi¯cant in°uence on the quantitative
accuracy. Both these observations are not surprising, but `How few (modes) is too few?' is a question that has
not received a satisfactory answer to date.

Table 1. Data for parameters ®n and µn.

Mode 1 2 3 4 5 6
®n, 1/s Free ¡324:8 ¡583:6 ¡889:4 ¡1262:7 ¡1500:0
µn, rad/s 12:9 46:8 ¡29:3 ¡131:0 ¡280:0 ¡300:0

2.1. Energy Transfer. Looking at Eq. (2.1), it is clear that in the absence of the second order gasdynamic
terms on the right hand side, the individual modes behave as uncoupled linear oscillators. The coupling, and
hence the energy transfer, between the modes is entirely due to the nonlinear gasdynamics. The in°uence of the
nonlinear terms in the energy transfer process is presented in a concise form in Table 2 for the ¯rst eight modes.
Each entry in the second column of Table 2 represents a pair of nonlinear gasdynamic terms that transfer energy
to a particular mode from a lower numbered mode, i.e., energy transfer up the mode numbers from lower to
higher modes. The third column, on the other hand, lists the terms that cause reverse energy transfer, i.e., from
higher mode numbers to the lower ones. For instance, in the row for mode number 2, a term `13' implies that
the second mode is excited by terms of the form ´1´3 and _́1 _́3. The term `13' represents a reverse transfer of
energy from the third mode to the second mode. It can be seen that terms with Ĉ(1) and D̂(1) as coe±cients
appear in the second column of Table 2, while the third column consists of terms with Ĉ(2) and D̂(2) as coe±cients.

Table 2. Inter-modal energy transfers.

Mode number Energy transfer up the modes Reverse energy transfer
1 12, 23, 34, 45, 56, 67, 78
2 11 13, 24, 35, 46, 57, 68
3 12, 21 14, 25, 36, 47, 58
4 13, 22, 31 15, 26, 37, 48
5 14, 23, 32, 41 16, 27, 38
6 15, 24, 33, 42, 51 17, 28
7 16, 25, 34, 43, 52, 61 18
8 17, 26, 35, 44, 53, 62, 71
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A look down the second column of Table 2 shows that every term in the energy transfer up the modes acts
as a near-resonant excitation. For instance, consider the ¯rst mode to be oscillating at its (shifted) natural
frequency !s1, and recall that the (shifted) natural frequencies of the higher modes are approximately integral
multiples of that of the ¯rst mode. Then, the terms `11' will excite the second mode at exactly 2!s1, which is
approximately equal to its (shifted) natural frequency. Likewise, terms like `12' and `21' will excite the third mode
at a frequency 3!s1, which will nearly resonate with its (shifted) natural frequency, and so on. Hence, the modes
in Eq. (2.1) represent a set of resonantly coupled oscillators. In contrast, the reverse energy transfer terms in
the third column of Table 2 typically excite the modes at frequencies much higher than their resonant frequency,
and hence contribute little to the overall modal amplitudes, except for the terms in boldface. The boldface terms
represent parametric excitations which can alter the dynamics of the modes, in contrast to the other terms which
act as external forcings that can merely contribute to the modal amplitude at a particular frequency. When the
boldfaced terms are taken to the left hand side of the respective oscillator equation in Eq. (2.1), they can be seen
to alter the frequency and damping of the modes, and thus, they can change the qualitative dynamical behavior.
This can be clearly seen, for example, by writing the dynamical equation for the ¯rst mode with the parametric
excitations moved to the left hand side as follows:

Ä́1 + [¡2®̂1 + Ĉ(2)11 _́2] _́1 + [(1¡ 2µ̂1) + D̂(2)
11 ´2]´1 = [other RHS terms] (2.2)

The term involving Ĉ
(2)
11 represents a reverse transfer of energy from the second to the ¯rst mode that could

potentially destabilize the ¯rst mode. The e®ect of the other boldface terms in Table 2 can be similarly interpreted
as a change in the damping and frequency of the oscillator equation in which they appear.

2.2. Modal Truncation. We are now in a position to answer the question of how many modes need to
be retained in an analysis to obtain qualitatively correct results for an nth mode instability. Consider the case
where the ¯rst mode goes linearly unstable and begins oscillating at a frequency − (which may be slightly dif-
ferent from its shifted natural frequency !s1 due to nonlinear e®ects). Energy is then transferred to the second
mode, which is resonantly excited by the terms `11' and set into oscillation at a frequency of 2−. A part of the
energy from the second mode is reverse transferred to the ¯rst mode due to the boldfaced `12' terms in Table 2.
Thus, the dynamics of the ¯rst mode is nonlinearly coupled to that of the second mode, and it is necessary to
consider the ¯rst and second mode oscillators coupled together. However, since the parametric excitation terms
`12' can signi¯cantly alter the dynamics of the ¯rst mode, it is important that they are correctly represented.
When the third and higher modes are neglected, the second mode cannot transfer energy up the mode numbers
as per the terms in the second column of Table 2. Instead, it is forced to reverse transfer part of this energy
to the ¯rst mode, due to which the parametric excitations are larger than they ought to be, and the resulting
dynamics may show large-amplitude limit cycles that are spurious. Such spurious limit cycles were observed,
but could not be explained, in the two-mode continuation results of Jahnke and Culick [18], and, previously, in
the two-mode analytical results reported by Awad and Culick [12], and by Paparizos and Culick [13]. Hence,
the modal truncation should be such that all signi¯cant energy transfers up the modes are accommodated. This
requires that all modes that directly receive energy from modes 1 and 2, individually or collectively, should be
represented in the truncated set of equations. It is seen from Table 2 that direct energy transfer from modes 1
and 2 to the higher modes occurs through the terms `12' and `21' to the third mode, and through the term `22'
to the fourth mode. All other energy transfers to the higher modes are indirect in the sense that they require
the participation of the ¯rst/second mode and another higher mode. Thus, in a ¯rst mode instability, the third
and fourth modes play an important role as energy sinks and must be included in the modal truncation, even
though their direct in°uence on the dynamics of the ¯rst mode is not signi¯cant. In summary, the truncated set
of equations for correct qualitative analysis of a ¯rst mode instability should contain at least four modes | the
unstable mode (mode 1), the coupled modes (mode 2), and the energy sinks (modes 3 and 4). This argument
can be easily extended to determine the minimum order of the modal truncation for analysis of an nth mode
instability. For example, in case of a second mode instability, it can be shown that the modal truncation must
retain at least the ¯rst eight modes.

Continuation results for ¯rst and second mode instability have been reported in [18, 19, 22], where upto sixteen
modes have been retained. Examination of these results con¯rms that computations for ¯rst mode instability with
a modal truncation that did not retain at least four modes were qualitatively incorrect. Similarly, second mode
instability computations that retained fewer than eight modes are seen to be qualitatively inconsistent. In the
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following sections of this paper, we shall examine the ¯rst mode instability problem with a four-mode truncation.
In particular, we shall be interested in conditions under which triggered limit cycles occur.

3. Triggered Limit Cycles

The set of coupled acoustic oscillators in Eq. (2.1) can be seen to have an equilibrium state where each ´n = 0,
i.e., none of the acoustic modes are excited. Since the oscillators are all linearly decoupled, the linear damping
coe±cient for each mode, ®̂n, determines whether or not that particular mode is linearly stable. When each
®̂n is negative, then the equilibrium state of the set of acoustic oscillators is linearly stable. In that case, small
perturbations from the equilibrium state damp out with time, and the system of oscillators tends to return to its
equilibrium state. Combustion instability occurs when one of the modes gets undamped, i.e., the corresponding
®̂n changes sign from negative to positive. For positive ®̂n, the equilibrium state is linearly unstable, and small
perturbations in the acoustic mode amplitudes initially grow with time. Nonlinear e®ects then become important
and the modal amplitudes eventually settle down to a periodic oscillation called a limit cycle. Thus, given a model
for the nonlinear dynamics of the acoustic waves, such as that in Eq. (2.1), one needs to predict the amplitude
and frequency of the limit cycle oscillations at onset of combustion instability. This is easily done by using a
continuation and bifurcation software such as AUTO97 [28]. Consider the ¯rst mode instability problem with
a four-mode truncation of the set of oscillators in Eq. (2.1), where the only nonlinear terms are due to second
order gasdynamics. Equilibrium states and limit cycles for this case have been computed for varying values of
¯rst mode damping parameter ®̂1 using the data in Table 1. Results are obtained for the amplitudes of the ¯rst
four modes and, in case of limit cycles, also the time period of the oscillation. Of these, the ¯rst mode amplitude
is plotted in Fig. 1 (plots for the other modal amplitudes are qualitatively similar) over a range of values of the
parameter ®̂1. Figure 1 shows that the zero-amplitude equilibrium is linearly stable for ®̂1 < 0 and becomes
unstable for ®̂1 > 0, with onset of instability occuring at ®̂1 = 0. Stable limit cycles emerge at the critical point
®̂1 = 0, which is called a supercritical Hopf bifurcation point. For any negative value of ®̂1, the only stable
solution is the zero-amplitude equilibrium, and the acoustic waves tend to damp out, no matter how large the
initial perturbation. Thus, the coupled oscillator model with second order gasdynamics alone shows only linear
instability.

Figure 1. Stable limit cycles at a supercritical Hopf bifurcation for a ¯rst mode instability
with second order gasdynamics alone (full line | stable equilibrium, dashed line | unstable
equilibrium, ¯lled circle | stable limit cycle, ¯lled square | Hopf bifurcation).

Solid propellant rockets, as discussed earlier, have been known to show both linear and nonlinear or triggered
instability. Examples of triggered instability are shown in the schematic bifurcation diagrams in Fig. 2, where x
is a variable and ¹ is a parameter. In each of the diagrams in Fig. 2, there is a range of values of the parameter
¹ for which a stable equilibrium state co-exists with a stable limit cycle. For any parameter value in this range,
small perturbations in x from the equilibrium state will tend to decay with time, but for larger perturbations,
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the system may show stable limit cycle oscillations. That is, though the equilibrium state is linearly stable, the
system could be pulsed or triggered into limit cycle behavior. These stable limit cycles are called triggered limit
cycles. The triggered limit cycles in Fig. 2 are qualitatively di®erent from the stable limit cycles in Fig. 1 in two
respects: 1) Triggered limit cycles in Fig. 2 exist to the left of the Hopf bifurcation point that signi¯es onset of
(linear) combustion instability, whereas the stable limit cycles in Fig. 1 occur only for parameter values to the
right of the Hopf bifurcation. 2) Moving along the parameter axis from left to right, the triggered limit cycles
in Fig. 2 begin abruptly with a ¯nite non-zero amplitude at a fold bifurcation, as against the stable limit cycles
in Fig. 1 whose amplitude starts from zero at the Hopf bifurcation point. Triggered limit cycles are, therefore,
also called large-amplitude limit cycles in the literature [25, 26, 27]. The onset of triggered limit cycles at a fold
bifurcation can be considered to be a nonlinear combustion instability phenomenon. Thus, with increasing values
of the parameter ¹, the systems in Fig. 2 ¯rst show a nonlinear combustion instability at a fold bifurcation, and
then a linear combustion instability at a Hopf bifurcation.

Figure 2. Triggered limit cycles at (a) subcritical Hopf bifurcation, and (b) supercritical Hopf
bifurcation (full line | stable equilibrium, dashed line | unstable equilibrium, ¯lled circle |
stable limit cycle, empty circle | unstable limit cycle, ¯lled square | Hopf bifurcation, empty
square | fold bifurcation).

Triggered limit cycles can be a disquieting phenomenon due to the sudden increase in the amplitudes of the
acoustic modes. Moreover, the phenomenon is worrisome because triggered instability could occur even when
linearly stable operating conditions have been ensured. Hence, there is a need to develop models that can faithfully
capture the qualitative dynamics of triggered limit cycles in combustion chambers. Unfortunately, the coupled
acoustic oscillator model in Eq. (2.1), from past experience and as seen in Fig. 1, does not seem to accommodate
triggered limit cycles, but this has never been de¯nitely established. We can now explain the lack of triggered
limit cycles in the oscillator model of Eq. (2.1) by comparing the in°uence of the second order gasdynamic
nonlinearities with nonlinear terms that are known to cause triggering in coupled oscillator systems. There are
two known mechanisms for generation of triggered limit cycles in systems of resonantly coupled oscillators.

1. Nonlinear damping terms of the form jf(´n)j _́n or jf( _́n)j _́n have been shown to produce triggered limit
cycles with either subcritical or supercritical Hopf bifurcations, as sketched in Fig. 2 [26].

2. Parametric excitation terms of the form c _́2n _́n or c´2n _́n are also known to be able to create a subcritical
Hopf bifurcation and triggered limit cycles, as pictured in Fig. 2(a), depending on the sign of the coe±cient
c, i.e., c < 0 for triggering, and c > 0 for non-triggering [27].

Examining the nonlinear terms in the equation for the ¯rst acoustic mode, which is reproduced below from
Eq. (2.2),

Ä́1 + [¡2®̂1 + Ĉ(2)11 _́2] _́1 + [(1¡ 2µ̂1) + D̂(2)
11 ´2]´1 = [other RHS terms] (3.3)

it can be observed that there are no nonlinear damping terms, but the second order gasdynamic term Ĉ
(2)
11 _́2 _́1 does

indeed act as a parametric excitation of the desired form as listed in 2. above. (The other parametric excitation

term D̂
(2)
11 ´2´1 is clearly not of the desired form.) However, on using the expressions following Eq. (2.1), the
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coe±cient Ĉ
(2)
11 can be evaluated to be

Ĉ
(2)
11 = (3¡ 2°)=2°

which is usually positive, where ° is the ratio of speci¯c heats. The term Ĉ
(2)
11 _́2 _́1, thus, turns out to be a

parametric excitation of the non-triggering type. It follows that second order gasdynamic nonlinearities, as they
exist, are incapable of inducing triggered limit cycles. As an academic exercise, one may choose an arbitrary non-

physical value of ° that makes the coe±cient Ĉ
(2)
11 negative; then, triggered limit cycles can indeed be observed

[29]. In summary, triggered limit cycles observed in solid propellant rockets cannot be explained by modeling the
second order gasdynamic nonlinearities alone.

The most promising source for the triggering mechanism then appears to be nonlinear combustion. The approx-
imate formulation of Eq. (2.1) already accounts for contributions from linear combustion processes. Nonlinear
combustion phenomena can be included in the coupled oscillator system of Eq. (2.1) by introducing additional
terms Fncn representing pressure and velocity coupling e®ects. The modal equations for the set of coupled oscil-
lators then appear as

Ä́n ¡ 2®̂n _́n + n(n¡ 2µ̂n)´n = ¡
n¡1X
i=1

³
Ĉ
(1)
ni _́i _́n¡i + D̂

(1)
ni ´i´n¡i

´
¡

1X
i=1

³
Ĉ
(2)
ni _́i _́n+i + D̂

(2)
ni ´i´n+i

´
+ Fncn (3.4)

where ´n is again the amplitude of the n
th acoustic mode. Culick et al [19] and Burnley [22] considered the

nonlinear pressure coupling terms in the Levine-Baum model as a possible candidate for the creation of triggered
limit cycles. They observed that the nonlinear pressure coupling terms did indeed cause triggering, but the
required values of the coe±cients of these terms turned out to be unrealistically large. Their observations can
now be explained by noting that the nonlinear pressure coupling terms in the Levine-Baum model are in fact
second order parametric excitation terms with a negative coe±cient (see Eq. (33) of Culick et al [19]), and, hence,
of the type that can cause triggering. Then, for a ¯rst mode instability problem with second order gasdynamics
and nonlinear pressure coupling, the parametric excitation terms in the equation for the ¯rst acoustic mode appear

as (Ĉ
(2)
11 + C

pc
1 ) _́2 _́1, where C

pc
1 is the coe±cient of the pressure coupling term. Now, the combined coe±cient

(Ĉ
(2)
11 +C

pc
1 ) is required to be negative for triggering to occur, and although C

pc
1 is known to be negative, it clearly

needs to be large enough to overcome the positive value due to Ĉ
(2)
11 . Unfortunately, for reasonable values of C

pc
1 ,

the combined coe±cient is still positive, and, as a result, the nonlinear pressure coupling model does not lead to
triggering. This leaves us to consider velocity coupling models as a possible candidate to explain the occurrence
of triggered instability.

4. Velocity Coupling Models

Levine and Baum [17] suggested a velocity coupling function of the form Fncn = f( _́n) _́n, with f( _́n) = C
vc
n j _́nj,

to model the nonlinear combustion response to an acoustic velocity parallel to the burning surface. The equation
for the ¯rst acoustic mode, with second order gasdynamics and the Levine-Baum velocity coupling model, is then
of the form

Ä́1 + [¡2®̂1 + Ĉ(2)11 _́2 + Cvc1 j _́1j] _́1 + [(1¡ 2µ̂1) + D̂(2)
11 ´2]´1 = [other RHS terms] (4.5)

The velocity coupling function in Eq. (4.5) represents a nonlinear damping mechanism, and can, therefore, be
expected to create triggered limit cycles at onset of ¯rst mode combustion instability. This is con¯rmed by
computing equilibrium points and limit cycles for a four-mode truncation of the coupled oscillator system Eq. (3.4)
for the data in Table 1. The velocity coupling function in the equation for the ¯rst acoustic mode is taken as
shown in Eq. (4.5) with Cvc1 = 0:2. Results for the ¯rst mode amplitude are plotted in Fig. 3 for varying values of
the parameter ®̂1. Triggered limit cycles are clearly seen in Fig. 3 at a subcritical Hopf bifurcation, similar to that
sketched in the schematic bifurcation diagram of Fig. 2(a). Thus, the Levine-Baum velocity coupling model along
with the second order gasdynamic nonlinearities is adequate to capture triggered limit cycles in solid propellant
combustion systems. However, from a qualitative point of view, the dynamics represented by the bifurcation
diagram in Fig. 3 is not entirely satisfactory. This is because the stable triggered limit cycles terminate at some
positive value of ®̂1 beyond which there are no stable equilibrium or limit cycle solutions. This implies that,
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where there are no stable solutions, the slightest perturbation will cause the modal amplitudes to eventually grow
to in¯nity. Such dynamical behavior is clearly non-physical and must be eliminated.

Figure 3. Triggered limit cycles at a subcritical Hopf bifurcation for a ¯rst mode instability with
second order gasdynamics and the Levine-Baum velocity coupling function (full line | stable
equilibrium, dashed line | unstable equilibrium, ¯lled circle | stable limit cycle, empty circle
| unstable limit cycle, ¯lled square | Hopf bifurcation).

Levine and Baum [17] also suggested that threshold e®ects that had been observed experimentally be incorporated
in the velocity coupling function. Burnley and Culick [21] modi¯ed the Levine-Baum velocity coupling function
by introducing a dead zone to obtain an ad hoc velocity coupling function with a threshold, as follows:

f( _́1) = 0; j _́1j < j _́t1j
f( _́1) = Cvc1 j _́1 ¡ _́t1j; j _́1j ¸ j _́t1j (4.6)

where _́t1 is the threshold value of _́1. Computation of equilibrium and limit cycle solutions is carried out as
before, but with the Burnley-Culick velocity coupling function in Eq. (4.6) instead of the Levine-Baum model.
The parameter Cvc1 in Eq. (4.6) is retained unchanged, i.e., Cvc1 = 0:2, and a threshold value of _́t1 = 0:02 is
chosen. A plot of the ¯rst mode amplitude for this case with varying values of the parameter ®̂1 is shown in
Fig. 4, where triggered limit cycles of the form sketched in Fig. 2(b) may be observed at a supercritical Hopf
bifurcation. However, it is known that functions f( _́1) that are approximately quadratic in shape, e.g., the Levine-
Baum function, show triggered limit cycles of the subcritical type, while those that are approximately quartic
(fourth-order), like the Burnley-Culick function, show triggered limit cycles of the supercritical type [26]. It is not
di±cult to come up with velocity coupling models with no threshold, but with an approximately quartic function
f( _́1), that also produce triggered limit cycles of the supercritical type as in Fig. 4 [30]. Thus, the change from
subcritical triggering in Fig. 3 to supercritical triggering in Fig. 4 cannot be attributed to the threshold e®ect in
the Burnley-Culick velocity coupling function. Besides, the non-physical dynamical behavior seen over a range of
positive values of ®̂1 in Fig. 3 persists in Fig. 4 as well.

To resolve this issue, we go back to the bifurcation diagram of Fig. 3 and the Levine-Baum velocity coupling model.
It is clear that the qualitative dynamics of triggered limit cycles at onset of ¯rst mode combustion instability at
the subcritical Hopf bifurcation is adequately captured in Fig. 3. This means that the form of the Levine-Baum
velocity coupling function is appropriate for small _́1, i.e., near the region of onset of instability. The non-physical
dynamics in Fig. 3 occurs for larger values of ´1 and _́1, which implies that the form of the Levine-Baum velocity
coupling model requires to be corrected for large _́1, without a®ecting its shape in the neighborhood of _́1 = 0.
The lowest order correction term to the Levine-Baum function which meets these requirements is a quadratic
term with value zero at _́1 = 0, slope zero at _́1 = 0, and a magnitude that subtracts from the value of the
function for large _́1. The new velocity coupling function, with such a quadratic term included, can be expressed
as

f( _́1) = C
vc
1 j _́1j ¡Dvc

1 j _́1j2 (4.7)
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Figure 4. Triggered limit cycles at a supercritical Hopf bifurcation for a ¯rst mode instability
with second order gasdynamics and the Burnley-Culick threshold velocity coupling function (full
line | stable equilibrium, dashed line | unstable equilibrium, ¯lled circle | stable limit cycle,
empty circle | unstable limit cycle, ¯lled square | Hopf bifurcation).

For a particular choice of the coe±cients, Cvc1 = 0:2 and Dvc
1 = 0:8, the shape of the new velocity coupling

function appears as plotted in Fig. 5. Surprisingly, the nonlinear function in Fig. 5 naturally shows a threshold
character, but one that is quite di®erent from the Burnley-Culick function. Computations are now carried out
for equilibrium solutions and limit cycle amplitudes under identical conditions as was done for Fig. 3, but with
the new velocity coupling function in Eq. (4.7) instead of the Levine-Baum model. Results for the ¯rst mode
amplitude with varying parameter ®̂1 are shown in Fig. 6. As expected, the subcritical Hopf bifurcation in Fig. 6
is identical to that in Fig. 3, and the qualitative dynamics of the triggered limit cycles in the vicinity of the Hopf
bifurcation point, i.e., for small ´1 and _́1, remains unchanged. However, the stable limit cycles persist for all
positive values of the parameter ®̂1, and the non-physical dynamical behavior in Fig. 3 is, therefore, eliminated
in Fig. 6. Thus, the new velocity coupling function in Fig. 5 provides a satisfactory picture of the qualitative
dynamics of the triggered limit cycles created at onset of combustion instability. In addition, the new velocity
coupling function that is derived from dynamical considerations naturally satis¯es the physical requirement of
having a threshold character.

Figure 5. The form of the velocity coupling function obtained by correcting the Levine-Baum
function with a suitable quadratic term.
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Figure 6. Triggered limit cycles at a subcritical Hopf bifurcation for a ¯rst mode instability
with second order gasdynamics and the threshold velocity coupling function in Fig. 5 (full line |
stable equilibrium, dashed line | unstable equilibrium, ¯lled circle | stable limit cycle, empty
circle | unstable limit cycle, ¯lled square | Hopf bifurcation).

5. Conclusions

Several questions regarding the modeling and dynamics of acoustic waves in combustion chambers have been
addressed in this paper using the approximate analysis originally developed by Culick. First among these is the
question of modal truncation, i.e., how many modes need to be retained in a truncated model of the coupled
oscillator equations in order to predict the qualitative dynamics of the acoustic waves correctly. Previous studies of
¯rst and second mode instabilities arbitrarily chose to retain between two and sixteen modes. We have now shown
that a ¯rst mode instability requires a minimum of four modes in the modal truncation, while for a second mode
instability, one needs to retain at least the ¯rst eight modes. Secondly, it has been widely believed from previous
studies that the approximate analysis with only second order gasdynamic nonlinearities could not show triggered
limit cycles. This has now been theoretically established by recognizing that second order gasdynamics does
not contribute either nonlinear damping or parametric excitation terms in the form required to cause triggered
limit cycles. Finally, nonlinear combustion mechanisms for triggering based on pressure and velocity coupling
models have been studied. Results from a previous study which suggested that pressure coupling does not lead to
triggering have now been explained. Velocity coupling models have been shown to induce triggered instability due
to a nonlinear damping mechanism. Velocity coupling models used in the past have been examined, and a new
velocity coupling function has been derived that captures the qualitative dynamics at onset of triggered instability.
Interestingly, our velocity coupling function naturally shows a threshold nature unlike previous velocity coupling
models that had an arti¯cially imposed threshold character.
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